論文の概要: Recovering Surveillance Video Using RF Cues
- arxiv url: http://arxiv.org/abs/2212.13340v1
- Date: Tue, 27 Dec 2022 01:57:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-29 15:18:36.070950
- Title: Recovering Surveillance Video Using RF Cues
- Title(参考訳): RFキューを用いた監視映像の復元
- Authors: Xiang Li, Rabih Younes
- Abstract要約: CSI2Videoは,細粒度監視映像をリアルタイムに再現するクロスモーダルな手法である。
我々のソリューションは、高価な無線機器を使わずにリアルな監視ビデオを生成し、ユビキタスで安価でリアルタイムな特性を持つ。
- 参考スコア(独自算出の注目度): 5.818870353966268
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video capture is the most extensively utilized human perception source due to
its intuitively understandable nature. A desired video capture often requires
multiple environmental conditions such as ample ambient-light, unobstructed
space, and proper camera angle. In contrast, wireless measurements are more
ubiquitous and have fewer environmental constraints. In this paper, we propose
CSI2Video, a novel cross-modal method that leverages only WiFi signals from
commercial devices and a source of human identity information to recover
fine-grained surveillance video in a real-time manner. Specifically, two
tailored deep neural networks are designed to conduct cross-modal mapping and
video generation tasks respectively. We make use of an auto-encoder-based
structure to extract pose features from WiFi frames. Afterward, both extracted
pose features and identity information are merged to generate synthetic
surveillance video. Our solution generates realistic surveillance videos
without any expensive wireless equipment and has ubiquitous, cheap, and
real-time characteristics.
- Abstract(参考訳): ビデオキャプチャは、直感的に理解できる性質のため、最も広く利用されている人間の知覚源である。
所望の映像撮影には、環境光量、遮蔽空間、適切なカメラアングルなどの複数の環境条件が必要である。
対照的に、無線測定はよりユビキタスで、環境制約が少ない。
本稿では,商用機器からのwi-fi信号と,人間の身元情報のみを活用し,詳細な監視映像をリアルタイムに回収する新しいクロスモーダル手法であるcsi2videoを提案する。
具体的には、2つの調整されたディープニューラルネットワークが、それぞれクロスモーダルマッピングとビデオ生成タスクを実行するように設計されている。
WiFiフレームからポーズ特徴を抽出するために,自動エンコーダに基づく構造を用いる。
その後、抽出されたポーズ特徴と識別情報を融合して合成監視ビデオを生成する。
我々のソリューションは、高価な無線機器を使わずにリアルな監視ビデオを生成し、ユビキタスで安価でリアルタイムな特性を持つ。
関連論文リスト
- ViFi-ReID: A Two-Stream Vision-WiFi Multimodal Approach for Person Re-identification [3.3743041904085125]
人物再識別(ReID)は、安全検査、人員計数などにおいて重要な役割を担っている。
現在のReIDアプローチのほとんどは、主に目的条件の影響を受けやすい画像から特徴を抽出する。
我々は、Wi-Fi信号のチャネル状態情報(CSI)を介して歩行者からの歩行情報をキャプチャすることで、広く利用可能なルータをセンサデバイスとして活用する。
論文 参考訳(メタデータ) (2024-10-13T15:34:11Z) - CausalVE: Face Video Privacy Encryption via Causal Video Prediction [13.577971999457164]
ビデオやライブストリーミングのWebサイトの普及に伴い、公開対面のビデオ配信とインタラクションは、プライバシー上のリスクを増大させる。
これらの欠点に対処するニューラルネットワークフレームワークCausalVEを提案する。
我々のフレームワークは、公開ビデオの拡散において優れたセキュリティを有し、定性的、量的、視覚的な観点から最先端の手法より優れている。
論文 参考訳(メタデータ) (2024-09-28T10:34:22Z) - DensePose From WiFi [86.61881052177228]
WiFi信号の位相と振幅を24のヒト領域内の紫外線座標にマッピングするディープニューラルネットワークを開発した。
本モデルでは,複数の被験者の密集したポーズを,画像に基づくアプローチと同等の性能で推定することができる。
論文 参考訳(メタデータ) (2022-12-31T16:48:43Z) - Spatial-Temporal Frequency Forgery Clue for Video Forgery Detection in
VIS and NIR Scenario [87.72258480670627]
既存の周波数領域に基づく顔偽造検出手法では、GAN鍛造画像は、実際の画像と比較して、周波数スペクトルに明らかな格子状の視覚的アーチファクトを持つ。
本稿では,コサイン変換に基づくフォージェリークリュー拡張ネットワーク(FCAN-DCT)を提案し,より包括的な時空間特徴表現を実現する。
論文 参考訳(メタデータ) (2022-07-05T09:27:53Z) - A Wireless-Vision Dataset for Privacy Preserving Human Activity
Recognition [53.41825941088989]
アクティビティ認識の堅牢性を改善するため,WiNN(WiFi-based and video-based neural network)が提案されている。
以上の結果から,WiViデータセットは一次需要を満足し,パイプライン内の3つのブランチはすべて,80%以上のアクティビティ認識精度を維持していることがわかった。
論文 参考訳(メタデータ) (2022-05-24T10:49:11Z) - Forgery Attack Detection in Surveillance Video Streams Using Wi-Fi
Channel State Information [20.815889839515087]
サイバーセキュリティ違反は 監視ビデオストリームを 偽造攻撃に暴露する
従来のビデオ法医学のアプローチは、比較的長いビデオクリップの空間時間解析を用いてトレースをローカライズすることができる。
監視とWi-Fiインフラの広汎な共存を生かしたSecure-Poseを提案する。
Secure-Poseは98.7%の高い検出精度を達成し、再生および改ざん攻撃中の異常物体を局所化する。
論文 参考訳(メタデータ) (2022-01-24T06:51:03Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
本稿では,注目モジュールを持つネットワークを用いて,映像の有意な物体検出のためのコントラスト特徴を学習する。
コアテンションの定式化は、低レベル特徴と高レベル特徴を組み合わせるために用いられる。
提案手法は計算量が少なく,最先端の手法に対して良好に動作することを示す。
論文 参考訳(メタデータ) (2021-11-03T17:40:32Z) - Robust Privacy-Preserving Motion Detection and Object Tracking in
Encrypted Streaming Video [39.453548972987015]
本稿では,暗号化された監視ビデオのビットストリームに対して,効率的かつ堅牢なプライバシー保護動作検出と複数物体追跡手法を提案する。
提案手法は, 暗号化・圧縮された領域における既存の作業と比較して, 最高の検出・追跡性能を実現する。
我々の手法は、カメラの動き/ジッタ、動的背景、影など、様々な課題を伴う複雑な監視シナリオで効果的に利用することができる。
論文 参考訳(メタデータ) (2021-08-30T11:58:19Z) - A Video Is Worth Three Views: Trigeminal Transformers for Video-based
Person Re-identification [77.08204941207985]
ビデオベースの人物再識別(Re-ID)は、重複しないカメラで同一人物のビデオシーケンスを検索することを目的としている。
本稿では、ビデオベースのRe-IDのためのTrigeminal Transformers(TMT)という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-05T02:50:16Z) - Video Exploration via Video-Specific Autoencoders [60.256055890647595]
ヒト制御可能なビデオ探索を可能にするビデオ固有オートエンコーダを提案する。
特定のビデオの複数のフレームで訓練された単純なオートエンコーダは、さまざまなビデオ処理および編集タスクを実行できることを観察します。
論文 参考訳(メタデータ) (2021-03-31T17:56:13Z) - A Flow-Guided Mutual Attention Network for Video-Based Person
Re-Identification [25.217641512619178]
Person ReIDは多くの分析および監視アプリケーションにおいて難しい問題である。
ビデオベースのReIDは最近、特徴識別時間情報をキャプチャできるので、大きな関心を集めている。
本稿では、ReIDのための追加のキューとして、人物の動作パターンを探索する。
論文 参考訳(メタデータ) (2020-08-09T18:58:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。