論文の概要: Scaling Painting Style Transfer
- arxiv url: http://arxiv.org/abs/2212.13459v2
- Date: Wed, 26 Jun 2024 13:59:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 20:03:37.832461
- Title: Scaling Painting Style Transfer
- Title(参考訳): 絵画スタイルのスケーリング
- Authors: Bruno Galerne, Lara Raad, José Lezama, Jean-Michel Morel,
- Abstract要約: ニューラル・スタイル・トランスファー(Neural Style Transfer, NST)は、スタイル・イメージからコンテンツ・イメージへ、前例のないほどリッチなスタイル・トランスファーを生成する技術である。
本稿では,超高解像度(UHR)画像に対するグローバル最適化の解法を提案する。
このような高精細な絵画スタイルに対して,本手法が不整合品質のスタイル転送を実現することを示す。
- 参考スコア(独自算出の注目度): 10.059627473725508
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural style transfer (NST) is a deep learning technique that produces an unprecedentedly rich style transfer from a style image to a content image. It is particularly impressive when it comes to transferring style from a painting to an image. NST was originally achieved by solving an optimization problem to match the global statistics of the style image while preserving the local geometric features of the content image. The two main drawbacks of this original approach is that it is computationally expensive and that the resolution of the output images is limited by high GPU memory requirements. Many solutions have been proposed to both accelerate NST and produce images with larger size. However, our investigation shows that these accelerated methods all compromise the quality of the produced images in the context of painting style transfer. Indeed, transferring the style of a painting is a complex task involving features at different scales, from the color palette and compositional style to the fine brushstrokes and texture of the canvas. This paper provides a solution to solve the original global optimization for ultra-high resolution (UHR) images, enabling multiscale NST at unprecedented image sizes. This is achieved by spatially localizing the computation of each forward and backward passes through the VGG network. Extensive qualitative and quantitative comparisons, as well as a \textcolor{coverletter}{perceptual study}, show that our method produces style transfer of unmatched quality for such high-resolution painting styles. By a careful comparison, we show that state-of-the-art fast methods are still prone to artifacts, thus suggesting that fast painting style transfer remains an open problem. Source code is available at https://github.com/bgalerne/scaling_painting_style_transfer.
- Abstract(参考訳): ニューラルスタイル転送(Neural Style Transfer, NST)は、スタイルイメージからコンテンツイメージへの、前例のないほどリッチなスタイル転送を生成するディープラーニング技術である。
絵画から画像にスタイルを移すという点では特に印象的だ。
NSTは、コンテンツ画像の局所的な幾何学的特徴を保ちながら、スタイル画像のグローバルな統計に適合する最適化問題を解くことで、もともと達成された。
この元来のアプローチの主な欠点は、計算コストが高く、出力画像の解像度が高いGPUメモリ要求によって制限されていることである。
NSTを加速し、より大きなサイズで画像を生成するための多くのソリューションが提案されている。
しかし,本研究では,これらの高速化手法が,絵画スタイルの転写の文脈における生成画像の品質を損なうことを示唆している。
実際、絵画のスタイルを移すことは、カラーパレットや作曲スタイルから細かなブラシストローク、キャンバスのテクスチャに至るまで、様々なスケールの特徴を含む複雑な作業である。
本稿では,超高解像度(UHR)画像に対する元のグローバル最適化を解き,前例のない画像サイズでのマルチスケールNSTを実現する。
これは、VGGネットワークを介して各前方および後方の計算を空間的に局所化することで達成される。
広汎な質的,定量的な比較,および『textcolor{coverletter}{perceptual study}』は,このような高精細な絵画スタイルに対して,不整合品質のスタイル転送が可能であることを示す。
慎重に比較すると、最先端のファストメソッドが依然としてアーティファクトの傾向にあることが示され、高速塗装スタイルの転送は未解決の問題のままである。
ソースコードはhttps://github.com/bgalerne/scaling_painting_style_transferで公開されている。
関連論文リスト
- Stroke-based Neural Painting and Stylization with Dynamically Predicted
Painting Region [66.75826549444909]
ストロークベースのレンダリングは、ストロークのセットで画像を再現することを目的としている。
本研究では,現在のキャンバスに基づいて絵画領域を予測する合成ニューラルネットワークを提案する。
我々は、新しい微分可能な距離変換損失を伴って、ストロークベースのスタイル転送に拡張する。
論文 参考訳(メタデータ) (2023-09-07T06:27:39Z) - Artistic Arbitrary Style Transfer [1.1279808969568252]
任意スタイル転送(英: Arbitrary Style Transfer)とは、コンテンツ画像とスタイル画像という2つの画像から新しい画像を生成する技術である。
構造とスタイルコンポーネントのバランシングは、他の最先端のアルゴリズムが解決しようとしている大きな課題である。
本研究では、畳み込みニューラルネットワークを用いたディープラーニングアプローチを用いて、これらの問題を解決する。
論文 参考訳(メタデータ) (2022-12-21T21:34:00Z) - Domain Enhanced Arbitrary Image Style Transfer via Contrastive Learning [84.8813842101747]
Contrastive Arbitrary Style Transfer (CAST) は、新しいスタイル表現学習法である。
本フレームワークは,スタイルコード符号化のための多層スタイルプロジェクタ,スタイル分布を効果的に学習するためのドメイン拡張モジュール,画像スタイル転送のための生成ネットワークという,3つのキーコンポーネントから構成される。
論文 参考訳(メタデータ) (2022-05-19T13:11:24Z) - Interactive Style Transfer: All is Your Palette [74.06681967115594]
本稿では,ユーザが対話的に調和したスタイルのイメージを作成できる,図形的な対話型スタイル転送(IST)手法を提案する。
私たちのISTメソッドは、どこからでもブラシやディップスタイルとして機能し、ターゲットのコンテンツイメージの任意の領域にペイントします。
論文 参考訳(メタデータ) (2022-03-25T06:38:46Z) - Saliency Constrained Arbitrary Image Style Transfer using SIFT and DCNN [22.57205921266602]
一般的なニューラルスタイルの転送方法を使用する場合、スタイル画像のテクスチャや色は通常、コンテンツ画像に不完全に転送される。
本稿では,その効果を低減・回避するための新しいサリエンシ制約手法を提案する。
実験により、ソースイメージの正当性マップは正しいマッチングを見つけ出し、アーティファクトを避けるのに役立つことが示された。
論文 参考訳(メタデータ) (2022-01-14T09:00:55Z) - Controllable Person Image Synthesis with Spatially-Adaptive Warped
Normalization [72.65828901909708]
制御可能な人物画像生成は、望ましい属性を持つ現実的な人間の画像を作成することを目的としている。
本稿では,学習フロー場とワープ変調パラメータを統合した空間適応型ワープ正規化(SAWN)を提案する。
本稿では,テクスチャ・トランスファータスクの事前学習モデルを洗練するための,新たな自己学習部分置換戦略を提案する。
論文 参考訳(メタデータ) (2021-05-31T07:07:44Z) - Drafting and Revision: Laplacian Pyramid Network for Fast High-Quality
Artistic Style Transfer [115.13853805292679]
アートスタイルの転送は、サンプルイメージからコンテンツイメージへのスタイルの移行を目的としている。
図案作成と細部改訂の共通画法に触発されて,ラプラシアンピラミッドネットワーク(LapStyle)という新しいフィードフォワード方式を導入する。
本手法は, 定型的パターンを適切に伝達した高品質なスタイリズド画像をリアルタイムで合成する。
論文 参考訳(メタデータ) (2021-04-12T11:53:53Z) - Block Shuffle: A Method for High-resolution Fast Style Transfer with
Limited Memory [4.511923587827301]
Fast Style Transferは、フィードフォワードニューラルネットワークを使って入力画像をレンダリングする一連のNeural Style Transferアルゴリズムである。
出力層の高次元のため、これらのネットワークは計算に多くのメモリを必要とする。
本稿では,メモリ消費の少ない1つのタスクを複数のサブタスクに変換し,メモリ消費の少ない複数のサブタスクに変換する,Emphblock shuffleという新しい画像合成手法を提案する。
論文 参考訳(メタデータ) (2020-08-09T10:33:21Z) - Real-time Universal Style Transfer on High-resolution Images via
Zero-channel Pruning [74.09149955786367]
ArtNetは、高解像度画像上の普遍的、リアルタイム、および高品質なスタイル転送を同時に達成することができる。
ArtNetとS2を使用することで、我々の手法は最先端の手法よりも2.3~107.4倍高速である。
論文 参考訳(メタデータ) (2020-06-16T09:50:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。