General GAN-generated image detection by data augmentation in
fingerprint domain
- URL: http://arxiv.org/abs/2212.13466v2
- Date: Sun, 9 Apr 2023 13:11:26 GMT
- Title: General GAN-generated image detection by data augmentation in
fingerprint domain
- Authors: Huaming Wang, Jianwei Fei, Yunshu Dai, Lingyun Leng, Zhihua Xia
- Abstract summary: We first separate the fingerprints and contents of the GAN-generated images using an autoencoder based GAN fingerprint extractor.
The original fingerprints are substituted with the perturbed fingerprints and added to the original contents, to produce images that are visually invariant but with distinct fingerprints.
To our knowledge, we are the first to conduct data augmentation in the fingerprint domain.
- Score: 3.456122013525227
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we investigate improving the generalizability of GAN-generated
image detectors by performing data augmentation in the fingerprint domain.
Specifically, we first separate the fingerprints and contents of the
GAN-generated images using an autoencoder based GAN fingerprint extractor,
followed by random perturbations of the fingerprints. Then the original
fingerprints are substituted with the perturbed fingerprints and added to the
original contents, to produce images that are visually invariant but with
distinct fingerprints. The perturbed images can successfully imitate images
generated by different GANs to improve the generalization of the detectors,
which is demonstrated by the spectra visualization. To our knowledge, we are
the first to conduct data augmentation in the fingerprint domain. Our work
explores a novel prospect that is distinct from previous works on spatial and
frequency domain augmentation. Extensive cross-GAN experiments demonstrate the
effectiveness of our method compared to the state-of-the-art methods in
detecting fake images generated by unknown GANs.
Related papers
- GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
The rapid advancement of photorealistic generators has reached a critical juncture where the discrepancy between authentic and manipulated images is increasingly indistinguishable.
Although there have been a number of publicly available face forgery datasets, the forgery faces are mostly generated using GAN-based synthesis technology.
We propose a large-scale, diverse, and fine-grained high-fidelity dataset, namely GenFace, to facilitate the advancement of deepfake detection.
arXiv Detail & Related papers (2024-02-03T03:13:50Z) - RFDforFin: Robust Deep Forgery Detection for GAN-generated Fingerprint
Images [45.73061833269094]
We propose the first deep forgery detection approach for fingerprint images, which combines unique ridge features of fingerprint and generation artifacts of the GAN-generated images.
Our proposed approach is effective and robust with low complexities.
arXiv Detail & Related papers (2023-08-18T04:05:18Z) - Comparative analysis of segmentation and generative models for
fingerprint retrieval task [0.0]
Fingerprints deteriorate in quality if the fingers are dirty, wet, injured or when sensors malfunction.
This paper proposes a deep learning approach to address these issues using Generative (GAN) and models.
In our research, the u-net model performed better than the GAN networks.
arXiv Detail & Related papers (2022-09-13T17:21:14Z) - FIGO: Enhanced Fingerprint Identification Approach Using GAN and One
Shot Learning Techniques [0.0]
We propose a Fingerprint Identification approach based on Generative adversarial network and One-shot learning techniques.
First, we propose a Pix2Pix model to transform low-quality fingerprint images to a higher level of fingerprint images pixel by pixel directly in the fingerprint enhancement tier.
Second, we construct a fully automated fingerprint feature extraction model using a one-shot learning approach to differentiate each fingerprint from the others in the fingerprint identification process.
arXiv Detail & Related papers (2022-08-11T02:45:42Z) - A review of schemes for fingerprint image quality computation [66.32254395574994]
This paper reviews existing approaches for fingerprint image quality computation.
We also implement, test and compare a selection of them using the MCYT database including 9000 fingerprint images.
arXiv Detail & Related papers (2022-07-12T10:34:03Z) - Self-supervised GAN Detector [10.963740942220168]
generative models can be abused with malicious purposes, such as fraud, defamation, and fake news.
We propose a novel framework to distinguish the unseen generated images outside of the training settings.
Our proposed method is composed of the artificial fingerprint generator reconstructing the high-quality artificial fingerprints of GAN images.
arXiv Detail & Related papers (2021-11-12T06:19:04Z) - Learning to Disentangle GAN Fingerprint for Fake Image Attribution [25.140200292000046]
We propose a GAN Fingerprint Disentangling Network (GFD-Net) to disentangle the fingerprint from GAN-generated images and produce a content-irrelevant representation for fake image attribution.
A series of constraints are provided to guarantee the stability and discriminability of the fingerprint, which in turn helps content-irrelevant feature extraction.
Experiments show that our GFD-Net achieves superior fake image attribution performance in both closed-world and open-world testing.
arXiv Detail & Related papers (2021-06-16T12:50:40Z) - Ensembling with Deep Generative Views [72.70801582346344]
generative models can synthesize "views" of artificial images that mimic real-world variations, such as changes in color or pose.
Here, we investigate whether such views can be applied to real images to benefit downstream analysis tasks such as image classification.
We use StyleGAN2 as the source of generative augmentations and investigate this setup on classification tasks involving facial attributes, cat faces, and cars.
arXiv Detail & Related papers (2021-04-29T17:58:35Z) - ProxyFAUG: Proximity-based Fingerprint Augmentation [81.15016852963676]
ProxyFAUG is a rule-based, proximity-based method of fingerprint augmentation.
The best performing positioning method on this dataset is improved by 40% in terms of median error and 6% in terms of mean error, with the use of the augmented dataset.
arXiv Detail & Related papers (2021-02-04T15:59:30Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
Deep generative models have achieved a qualitatively new level of performance.
There are concerns on how this technology can be misused to spoof sensors, generate deep fakes, and enable misinformation at scale.
Our work enables a responsible disclosure of such state-of-the-art generative models, that allows researchers and companies to fingerprint their models.
arXiv Detail & Related papers (2020-12-16T03:51:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.