FIGO: Enhanced Fingerprint Identification Approach Using GAN and One
Shot Learning Techniques
- URL: http://arxiv.org/abs/2208.05615v2
- Date: Mon, 29 May 2023 03:21:23 GMT
- Title: FIGO: Enhanced Fingerprint Identification Approach Using GAN and One
Shot Learning Techniques
- Authors: Ibrahim Yilmaz and Mahmoud Abouyoussef
- Abstract summary: We propose a Fingerprint Identification approach based on Generative adversarial network and One-shot learning techniques.
First, we propose a Pix2Pix model to transform low-quality fingerprint images to a higher level of fingerprint images pixel by pixel directly in the fingerprint enhancement tier.
Second, we construct a fully automated fingerprint feature extraction model using a one-shot learning approach to differentiate each fingerprint from the others in the fingerprint identification process.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Fingerprint evidence plays an important role in a criminal investigation for
the identification of individuals. Although various techniques have been
proposed for fingerprint classification and feature extraction, automated
fingerprint identification of fingerprints is still in its earliest stage. The
performance of traditional \textit{Automatic Fingerprint Identification System}
(AFIS) depends on the presence of valid minutiae points and still requires
human expert assistance in feature extraction and identification stages. Based
on this motivation, we propose a Fingerprint Identification approach based on
Generative adversarial network and One-shot learning techniques (FIGO). Our
solution contains two components: fingerprint enhancement tier and fingerprint
identification tier. First, we propose a Pix2Pix model to transform low-quality
fingerprint images to a higher level of fingerprint images pixel by pixel
directly in the fingerprint enhancement tier. With the proposed enhancement
algorithm, the fingerprint identification model's performance is significantly
improved. Furthermore, we develop another existing solution based on Gabor
filters as a benchmark to compare with the proposed model by observing the
fingerprint device's recognition accuracy. Experimental results show that our
proposed Pix2pix model has better support than the baseline approach for
fingerprint identification. Second, we construct a fully automated fingerprint
feature extraction model using a one-shot learning approach to differentiate
each fingerprint from the others in the fingerprint identification process. Two
twin convolutional neural networks (CNNs) with shared weights and parameters
are used to obtain the feature vectors in this process. Using the proposed
method, we demonstrate that it is possible to learn necessary information from
only one training sample with high accuracy.
Related papers
- Deep Learning-Based Approaches for Contactless Fingerprints Segmentation
and Extraction [1.2441902898414798]
We develop a deep learning-based segmentation tool for contactless fingerprint localization and segmentation.
In our evaluation, our segmentation method demonstrated an average mean absolute error (MAE) of 30 pixels, an error in angle prediction (EAP) of 5.92 degrees, and a labeling accuracy of 97.46%.
arXiv Detail & Related papers (2023-11-26T01:56:10Z) - RFDforFin: Robust Deep Forgery Detection for GAN-generated Fingerprint
Images [45.73061833269094]
We propose the first deep forgery detection approach for fingerprint images, which combines unique ridge features of fingerprint and generation artifacts of the GAN-generated images.
Our proposed approach is effective and robust with low complexities.
arXiv Detail & Related papers (2023-08-18T04:05:18Z) - A review of schemes for fingerprint image quality computation [66.32254395574994]
This paper reviews existing approaches for fingerprint image quality computation.
We also implement, test and compare a selection of them using the MCYT database including 9000 fingerprint images.
arXiv Detail & Related papers (2022-07-12T10:34:03Z) - On the vulnerability of fingerprint verification systems to fake
fingerprint attacks [57.36125468024803]
A medium-size fake fingerprint database is described and two different fingerprint verification systems are evaluated on it.
Results for an optical and a thermal sweeping sensors are given.
arXiv Detail & Related papers (2022-07-11T12:22:52Z) - Pair-Relationship Modeling for Latent Fingerprint Recognition [25.435974669629374]
We propose a new scheme that can model the pair-relationship of two fingerprints directly as the similarity feature for recognition.
Experimental results on two databases show that the proposed method outperforms the state of the art.
arXiv Detail & Related papers (2022-07-02T11:31:31Z) - FingerGAN: A Constrained Fingerprint Generation Scheme for Latent
Fingerprint Enhancement [23.67808389519383]
We propose a new method that formulates the latent fingerprint enhancement as a constrained fingerprint generation problem.
Experimental results on two public latent fingerprint databases demonstrate that our method outperforms the state of the arts significantly.
arXiv Detail & Related papers (2022-06-26T14:05:21Z) - Synthesis and Reconstruction of Fingerprints using Generative
Adversarial Networks [6.700873164609009]
We propose a novel fingerprint synthesis and reconstruction framework based on the StyleGan2 architecture.
We also derive a computational approach to modify the attributes of the generated fingerprint while preserving their identity.
The proposed framework was experimentally shown to outperform contemporary state-of-the-art approaches for both fingerprint synthesis and reconstruction.
arXiv Detail & Related papers (2022-01-17T00:18:00Z) - A Comparative Study of Fingerprint Image-Quality Estimation Methods [54.84936551037727]
Poor-quality images result in spurious and missing features, thus degrading the performance of the overall system.
In this work, we review existing approaches for fingerprint image-quality estimation.
We have also tested a selection of fingerprint image-quality estimation algorithms.
arXiv Detail & Related papers (2021-11-14T19:53:12Z) - FDeblur-GAN: Fingerprint Deblurring using Generative Adversarial Network [22.146795282680667]
We propose a fingerprint deblurring model FDe-GAN, based on the conditional Generative Adversarial Networks (cGANs) and multi-stage framework of the stack GAN.
We integrate two auxiliary sub-networks into the model for the deblurring task.
We achieve an accuracy of 95.18% on our fingerprint database for the task of matching deblurred and ground truth fingerprints.
arXiv Detail & Related papers (2021-06-21T18:37:20Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
Deep generative models have achieved a qualitatively new level of performance.
There are concerns on how this technology can be misused to spoof sensors, generate deep fakes, and enable misinformation at scale.
Our work enables a responsible disclosure of such state-of-the-art generative models, that allows researchers and companies to fingerprint their models.
arXiv Detail & Related papers (2020-12-16T03:51:54Z) - Latent Fingerprint Registration via Matching Densely Sampled Points [100.53031290339483]
Existing latent fingerprint registration approaches are mainly based on establishing correspondences between minutiae.
We propose a non-minutia latent fingerprint registration method which estimates the spatial transformation between a pair of fingerprints.
The proposed method achieves the state-of-the-art registration performance, especially under challenging conditions.
arXiv Detail & Related papers (2020-05-12T15:51:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.