論文の概要: From Single-Visit to Multi-Visit Image-Based Models: Single-Visit Models
are Enough to Predict Obstructive Hydronephrosis
- arxiv url: http://arxiv.org/abs/2212.13535v1
- Date: Tue, 27 Dec 2022 16:14:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-29 14:25:28.348404
- Title: From Single-Visit to Multi-Visit Image-Based Models: Single-Visit Models
are Enough to Predict Obstructive Hydronephrosis
- Title(参考訳): シングルヴィジットからマルチヴィジット画像ベースモデル:シングルヴィジットモデルは閉塞性腎症の予測に十分である
- Authors: Stanley Bryan Z. Hua, Mandy Rickard, John Weaver, Alice Xiang, Daniel
Alvarez, Kyla N. Velear, Kunj Sheth, Gregory E. Tasian, Armando J. Lorenzo,
Anna Goldenberg, Lauren Erdman
- Abstract要約: これまでの研究では、腎臓超音波画像を用いて腎閉塞を予測できる深層学習の可能性を示している。
我々は,映像行動認識の手法を比較し,複数のビジット推論を扱うために単一ビジット畳み込みモデルを適用する。
患者の過去の来院時の画像の取り込みは,閉塞性水腎症の予知にわずかな効果しか得られないことを実証した。
- 参考スコア(独自算出の注目度): 5.064555548509468
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Previous work has shown the potential of deep learning to predict renal
obstruction using kidney ultrasound images. However, these image-based
classifiers have been trained with the goal of single-visit inference in mind.
We compare methods from video action recognition (i.e. convolutional pooling,
LSTM, TSM) to adapt single-visit convolutional models to handle multiple visit
inference. We demonstrate that incorporating images from a patient's past
hospital visits provides only a small benefit for the prediction of obstructive
hydronephrosis. Therefore, inclusion of prior ultrasounds is beneficial, but
prediction based on the latest ultrasound is sufficient for patient risk
stratification.
- Abstract(参考訳): これまでの研究では、腎臓超音波画像を用いて腎閉塞を予測できる深層学習の可能性を示している。
しかし、これらの画像に基づく分類器は、単一訪問推論を念頭に置いて訓練されてきた。
我々は,ビデオ行動認識(畳み込みプール,LSTM,TSM)の手法を比較し,複数の訪問推論を扱うために単一ビジット畳み込みモデルを適用する。
患者の過去の来院時の画像の取り込みは,閉塞性水腎症の予知にわずかな効果しか得られないことを実証した。
したがって, 先行超音波の挿入は有用であるが, 最新の超音波による予測は患者のリスク階層化に十分である。
関連論文リスト
- Self-Contrastive Weakly Supervised Learning Framework for Prognostic Prediction Using Whole Slide Images [3.6330373579181927]
予測は、基底の真理ラベルが本質的に弱いため、独特な挑戦となる。
そこで本研究では, ネットワークを用いた組織分割アルゴリズムを用いて, 関心領域の抽出を行う新しい3部フレームワークを提案する。
AUCは再発率0.721, 再発率0.678, 治療成績予測は0.678であった。
論文 参考訳(メタデータ) (2024-05-24T06:45:36Z) - Diffusion Reconstruction of Ultrasound Images with Informative
Uncertainty [5.375425938215277]
超音波画像の品質を高めるには、コントラスト、解像度、スペックル保存といった同時的な要因のバランスを取る必要がある。
拡散モデルの進歩を生かしたハイブリッドアプローチを提案する。
シミュレーション,in-vitro,in-vivoデータの総合的な実験を行い,本手法の有効性を実証した。
論文 参考訳(メタデータ) (2023-10-31T16:51:40Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
圧縮センシングマルチコイルMRIにおけるサブサンプリングパターンを最適化する学習手法を提案する。
拡散モデルとMRI計測プロセスにより得られた後部平均推定値に基づいて1段階の再構成を行う。
本手法では,効果的なサンプリングパターンの学習には5つのトレーニング画像が必要である。
論文 参考訳(メタデータ) (2023-06-05T22:09:06Z) - Detecting Heart Disease from Multi-View Ultrasound Images via Supervised Attention Multiple Instance Learning [5.201499435914216]
大動脈狭窄症 (Aortic stenosis, AS) は変性弁の状態であり、かなりの死亡率と死亡率を引き起こす。
AS検出に対する従来のアプローチでは、画像間の非フレキシブル平均に依存するため、精度が不十分であった。
2つの重要な方法論的革新とともに、新しいエンドツーエンドのMILアプローチに貢献する。
論文 参考訳(メタデータ) (2023-05-25T18:22:12Z) - Realistic Data Enrichment for Robust Image Segmentation in
Histopathology [2.248423960136122]
拡散モデルに基づく新しい手法を提案し、不均衡なデータセットを、表現不足なグループから有意な例で拡張する。
本手法は,限定的な臨床データセットを拡張して,機械学習パイプラインのトレーニングに適したものにする。
論文 参考訳(メタデータ) (2023-04-19T09:52:50Z) - Exploring the Utility of Self-Supervised Pretraining Strategies for the
Detection of Absent Lung Sliding in M-Mode Lung Ultrasound [72.39040113126462]
セルフ教師付きプレトレーニングは、医用画像における教師付き学習タスクのパフォーマンスを向上させるために観察されている。
本研究は,Mモード肺超音波画像における肺スライディング分類の下流タスクの微調整を指導する前,自己指導型プレトレーニングの有用性について検討した。
論文 参考訳(メタデータ) (2023-04-05T20:01:59Z) - Interpretable and intervenable ultrasonography-based machine learning
models for pediatric appendicitis [8.083060080133842]
虫垂炎は小児腹部手術の最も多い原因の一つである。
虫垂炎に対する以前の意思決定支援システムは、臨床、検査、スコアリング、およびCTデータに焦点を当ててきた。
超音波画像を用いた虫垂炎の診断・管理・重症度予測のための解釈可能な機械学習モデルを提案する。
論文 参考訳(メタデータ) (2023-02-28T10:08:11Z) - GraVIS: Grouping Augmented Views from Independent Sources for
Dermatology Analysis [52.04899592688968]
皮膚科画像から自己教師付き特徴を学習するために特に最適化されたGraVISを提案する。
GraVISは、病変のセグメンテーションと疾患分類のタスクにおいて、転送学習と自己教師型学習を著しく上回っている。
論文 参考訳(メタデータ) (2023-01-11T11:38:37Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
本稿では,患者スキャンに欠落するサブモダリティを1つ以上のインプットするために,MGP-VAE(Multi-modal Gaussian Process Prior Variational Autoencoder)を提案する。
MGP-VAEは、変分オートエンコーダ(VAE)に先立ってガウス過程(GP)を利用して、被験者/患者およびサブモダリティ相関を利用することができる。
4つのサブモダリティのうち2つ、または3つが欠落している脳腫瘍に対するMGP-VAEの適用性を示す。
論文 参考訳(メタデータ) (2021-07-07T19:06:34Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
糖尿病網膜症における訓練方法の違いによる影響を比較検討した。
本稿では,定量的性能,学習した特徴表現の統計,解釈可能性,画像歪みに対する頑健性など,さまざまな側面について検討する。
以上の結果から,ImageNet事前学習モデルでは,画像歪みに対する性能,一般化,堅牢性が著しく向上していることが示唆された。
論文 参考訳(メタデータ) (2021-06-25T08:32:45Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
本稿では、入力された内視鏡画像と対応するアノテーションとのマッピングを学習することを目的として、未ペア画像から画像への変換を提案する。
当社のアプローチでは,高価なアノテーションを取得することなく,イメージセグメンテーションモデルをトレーニングすることが可能です。
提案手法をEndovis 2017チャレンジデータセットで検証し,教師付きセグメンテーション手法と競合することを示す。
論文 参考訳(メタデータ) (2020-07-09T01:39:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。