Continuous Depth Recurrent Neural Differential Equations
- URL: http://arxiv.org/abs/2212.13714v1
- Date: Wed, 28 Dec 2022 06:34:32 GMT
- Title: Continuous Depth Recurrent Neural Differential Equations
- Authors: Srinivas Anumasa, Geetakrishnasai Gunapati, P.K. Srijith
- Abstract summary: We propose continuous depth recurrent neural differential equations (CDR-NDE) to generalize RNN models.
CDR-NDE considers two separate differential equations over each of these dimensions and models the evolution in the temporal and depth directions.
We also propose the CDR-NDE-heat model based on partial differential equations which treats the computation of hidden states as solving a heat equation over time.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recurrent neural networks (RNNs) have brought a lot of advancements in
sequence labeling tasks and sequence data. However, their effectiveness is
limited when the observations in the sequence are irregularly sampled, where
the observations arrive at irregular time intervals. To address this,
continuous time variants of the RNNs were introduced based on neural ordinary
differential equations (NODE). They learn a better representation of the data
using the continuous transformation of hidden states over time, taking into
account the time interval between the observations. However, they are still
limited in their capability as they use the discrete transformations and a
fixed discrete number of layers (depth) over an input in the sequence to
produce the output observation. We intend to address this limitation by
proposing RNNs based on differential equations which model continuous
transformations over both depth and time to predict an output for a given input
in the sequence. Specifically, we propose continuous depth recurrent neural
differential equations (CDR-NDE) which generalizes RNN models by continuously
evolving the hidden states in both the temporal and depth dimensions. CDR-NDE
considers two separate differential equations over each of these dimensions and
models the evolution in the temporal and depth directions alternatively. We
also propose the CDR-NDE-heat model based on partial differential equations
which treats the computation of hidden states as solving a heat equation over
time. We demonstrate the effectiveness of the proposed models by comparing
against the state-of-the-art RNN models on real world sequence labeling
problems and data.
Related papers
- Neural Differential Recurrent Neural Network with Adaptive Time Steps [11.999568208578799]
We propose an RNN-based model, called RNN-ODE-Adap, that uses a neural ODE to represent the time development of the hidden states.
We adaptively select time steps based on the steepness of changes of the data over time so as to train the model more efficiently for the "spike-like" time series.
arXiv Detail & Related papers (2023-06-02T16:46:47Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
We propose a unified framework for learning diverse classes of differential equations (DEs) including all the aforementioned ones.
Instead of modelling the dynamics in the time domain, we model it in the Laplace domain, where the history-dependencies and discontinuities in time can be represented as summations of complex exponentials.
In the experiments, Neural Laplace shows superior performance in modelling and extrapolating the trajectories of diverse classes of DEs.
arXiv Detail & Related papers (2022-06-10T02:14:59Z) - EXIT: Extrapolation and Interpolation-based Neural Controlled
Differential Equations for Time-series Classification and Forecasting [19.37382379378985]
neural controlled differential equations (NCDEs) are considered as a breakthrough in deep learning.
In this work, we enhance NCDEs by redesigning their core part, i.e., generating a continuous path from a discrete time-series input.
Our NCDE design can use both the extrapolation and the extrapolated information for downstream machine learning tasks.
arXiv Detail & Related papers (2022-04-19T09:37:36Z) - Modeling Irregular Time Series with Continuous Recurrent Units [3.7335080869292483]
We propose continuous recurrent units (CRUs) to handle irregular time intervals between observations.
We show that CRU can better interpolate irregular time series than neural ordinary differential equation (neural ODE)-based models.
We also show that our model can infer dynamics from im-ages and that the Kalman gain efficiently singles out candidates for valuable state updates from noisy observations.
arXiv Detail & Related papers (2021-11-22T16:49:15Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z) - Graph Gamma Process Generalized Linear Dynamical Systems [60.467040479276704]
We introduce graph gamma process (GGP) linear dynamical systems to model real multivariate time series.
For temporal pattern discovery, the latent representation under the model is used to decompose the time series into a parsimonious set of multivariate sub-sequences.
We use the generated random graph, whose number of nonzero-degree nodes is finite, to define both the sparsity pattern and dimension of the latent state transition matrix.
arXiv Detail & Related papers (2020-07-25T04:16:34Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Learning Continuous-Time Dynamics by Stochastic Differential Networks [32.63114111531396]
We propose a flexible continuous-time recurrent neural network named Variational Differential Networks (VSDN)
VSDN embeds the complicated dynamics of the sporadic time series by neural Differential Equations (SDE)
We show that VSDNs outperform state-of-the-art continuous-time deep learning models and achieve remarkable performance on prediction and tasks for sporadic time series.
arXiv Detail & Related papers (2020-06-11T01:40:34Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.