Cross-Dataset Propensity Estimation for Debiasing Recommender Systems
- URL: http://arxiv.org/abs/2212.13892v1
- Date: Thu, 22 Dec 2022 03:04:14 GMT
- Title: Cross-Dataset Propensity Estimation for Debiasing Recommender Systems
- Authors: Fengyu Li, Sarah Dean
- Abstract summary: We study the impact of selection bias on datasets with different quantization.
We then leverage two differently quantized datasets from different source distributions to mitigate distribution shift.
- Score: 5.449173263947196
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Datasets for training recommender systems are often subject to distribution
shift induced by users' and recommenders' selection biases. In this paper, we
study the impact of selection bias on datasets with different quantization. We
then leverage two differently quantized datasets from different source
distributions to mitigate distribution shift by applying the inverse
probability scoring method from causal inference. Empirically, our approach
gains significant performance improvement over single-dataset methods and
alternative ways of combining two datasets.
Related papers
- Session-based Recommender Systems: User Interest as a Stochastic Process in the Latent Space [0.0]
This paper addresses the problem of data uncertainty, popularity bias, and exposure bias in session-based recommender systems.
We study the symptoms of this bias both in item embeddings and in recommendations.
arXiv Detail & Related papers (2025-04-14T09:08:40Z) - Calibrated Multi-Preference Optimization for Aligning Diffusion Models [92.90660301195396]
Calibrated Preference Optimization (CaPO) is a novel method to align text-to-image (T2I) diffusion models.
CaPO incorporates the general preference from multiple reward models without human annotated data.
Experimental results show that CaPO consistently outperforms prior methods.
arXiv Detail & Related papers (2025-02-04T18:59:23Z) - Multi-Source Conformal Inference Under Distribution Shift [41.701790856201036]
We consider the problem of obtaining distribution-free prediction intervals for a target population, leveraging multiple potentially biased data sources.
We derive the efficient influence functions for the quantiles of unobserved outcomes in the target and source populations.
We propose a data-adaptive strategy to upweight informative data sources for efficiency gain and downweight non-informative data sources for bias reduction.
arXiv Detail & Related papers (2024-05-15T13:33:09Z) - Multiply Robust Estimation for Local Distribution Shifts with Multiple Domains [9.429772474335122]
We focus on scenarios where data distributions vary across multiple segments of the entire population.
We propose a two-stage multiply robust estimation method to improve model performance on each individual segment.
Our method is designed to be implemented with commonly used off-the-shelf machine learning models.
arXiv Detail & Related papers (2024-02-21T22:01:10Z) - Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
One-class classification refers to approaches of learning using data from a single class only.
We propose a deep learning one-class classification method suitable for multimodal data.
arXiv Detail & Related papers (2023-09-25T12:31:18Z) - Data thinning for convolution-closed distributions [2.299914829977005]
We propose data thinning, an approach for splitting an observation into two or more independent parts that sum to the original observation.
We show that data thinning can be used to validate the results of unsupervised learning approaches.
arXiv Detail & Related papers (2023-01-18T02:47:41Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
We develop a convenient gradient-based method for selecting the data augmentation.
We use a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective.
arXiv Detail & Related papers (2022-02-22T02:51:11Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
We propose a cross-sample adversarial debiasing (CSAD) method to remove the bias information misused by the target task.
The correlation measurement plays a critical role in adversarial debiasing and is conducted by a cross-sample neural mutual information estimator.
We conduct thorough experiments on publicly available datasets to validate the advantages of the proposed method over state-of-the-art approaches.
arXiv Detail & Related papers (2021-08-11T21:17:02Z) - Meta-Learning Conjugate Priors for Few-Shot Bayesian Optimization [0.0]
We propose a novel approach to utilize meta-learning to automate the estimation of informative conjugate prior distributions.
From this process we generate priors that require only few data to estimate the shape parameters of the original distribution of the data.
arXiv Detail & Related papers (2021-01-03T23:58:32Z) - Bayesian Semi-supervised Crowdsourcing [71.20185379303479]
Crowdsourcing has emerged as a powerful paradigm for efficiently labeling large datasets and performing various learning tasks.
This work deals with semi-supervised crowdsourced classification, under two regimes of semi-supervision.
arXiv Detail & Related papers (2020-12-20T23:18:51Z) - Decorrelated Clustering with Data Selection Bias [55.91842043124102]
We propose a novel Decorrelation regularized K-Means algorithm (DCKM) for clustering with data selection bias.
Our DCKM algorithm achieves significant performance gains, indicating the necessity of removing unexpected feature correlations induced by selection bias.
arXiv Detail & Related papers (2020-06-29T08:55:50Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z) - Robust Grouped Variable Selection Using Distributionally Robust
Optimization [11.383869751239166]
We propose a Distributionally Robust Optimization (DRO) formulation with a Wasserstein-based uncertainty set for selecting grouped variables under perturbations.
We prove probabilistic bounds on the out-of-sample loss and the estimation bias, and establish the grouping effect of our estimator.
We show that our formulation produces an interpretable and parsimonious model that encourages sparsity at a group level.
arXiv Detail & Related papers (2020-06-10T22:32:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.