Session-based Recommender Systems: User Interest as a Stochastic Process in the Latent Space
- URL: http://arxiv.org/abs/2504.10005v1
- Date: Mon, 14 Apr 2025 09:08:40 GMT
- Title: Session-based Recommender Systems: User Interest as a Stochastic Process in the Latent Space
- Authors: Klaudia Balcer, Piotr Lipinski,
- Abstract summary: This paper addresses the problem of data uncertainty, popularity bias, and exposure bias in session-based recommender systems.<n>We study the symptoms of this bias both in item embeddings and in recommendations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper jointly addresses the problem of data uncertainty, popularity bias, and exposure bias in session-based recommender systems. We study the symptoms of this bias both in item embeddings and in recommendations. We propose treating user interest as a stochastic process in the latent space and providing a model-agnostic implementation of this mathematical concept. The proposed stochastic component consists of elements: debiasing item embeddings with regularization for embedding uniformity, modeling dense user interest from session prefixes, and introducing fake targets in the data to simulate extended exposure. We conducted computational experiments on two popular benchmark datasets, Diginetica and YooChoose 1/64, as well as several modifications of the YooChoose dataset with different ratios of popular items. The results show that the proposed approach allows us to mitigate the challenges mentioned.
Related papers
- Slow Thinking for Sequential Recommendation [88.46598279655575]
We present a novel slow thinking recommendation model, named STREAM-Rec.<n>Our approach is capable of analyzing historical user behavior, generating a multi-step, deliberative reasoning process, and delivering personalized recommendations.<n>In particular, we focus on two key challenges: (1) identifying the suitable reasoning patterns in recommender systems, and (2) exploring how to effectively stimulate the reasoning capabilities of traditional recommenders.
arXiv Detail & Related papers (2025-04-13T15:53:30Z) - Variational Bayesian Personalized Ranking [39.24591060825056]
Variational BPR is a novel and easily implementable learning objective that integrates likelihood optimization, noise reduction, and popularity debiasing.<n>We introduce an attention-based latent interest prototype contrastive mechanism, replacing instance-level contrastive learning, to effectively reduce noise from problematic samples.<n> Empirically, we demonstrate the effectiveness of Variational BPR on popular backbone recommendation models.
arXiv Detail & Related papers (2025-03-14T04:22:01Z) - Modeling the Heterogeneous Duration of User Interest in Time-Dependent Recommendation: A Hidden Semi-Markov Approach [11.392605386729699]
We propose a hidden semi-Markov model to track the change of users' interests.<n>This model allows for capturing the different durations of user stays in a (latent) interest state.<n>We derive an algorithm to estimate the parameters and predict users' actions.
arXiv Detail & Related papers (2024-12-15T09:17:45Z) - Learning Recommender Systems with Soft Target: A Decoupled Perspective [49.83787742587449]
We propose a novel decoupled soft label optimization framework to consider the objectives as two aspects by leveraging soft labels.
We present a sensible soft-label generation algorithm that models a label propagation algorithm to explore users' latent interests in unobserved feedback via neighbors.
arXiv Detail & Related papers (2024-10-09T04:20:15Z) - Long-Sequence Recommendation Models Need Decoupled Embeddings [49.410906935283585]
We identify and characterize a neglected deficiency in existing long-sequence recommendation models.<n>A single set of embeddings struggles with learning both attention and representation, leading to interference between these two processes.<n>We propose the Decoupled Attention and Representation Embeddings (DARE) model, where two distinct embedding tables are learned separately to fully decouple attention and representation.
arXiv Detail & Related papers (2024-10-03T15:45:15Z) - Algorithmic Drift: A Simulation Framework to Study the Effects of Recommender Systems on User Preferences [7.552217586057245]
We propose a simulation framework that mimics user-recommender system interactions in a long-term scenario.
We introduce two novel metrics for quantifying the algorithm's impact on user preferences, specifically in terms of drift over time.
arXiv Detail & Related papers (2024-09-24T21:54:22Z) - Be Aware of the Neighborhood Effect: Modeling Selection Bias under Interference [50.95521705711802]
Previous studies have focused on addressing selection bias to achieve unbiased learning of the prediction model.
This paper formally formulates the neighborhood effect as an interference problem from the perspective of causal inference.
We propose a novel ideal loss that can be used to deal with selection bias in the presence of neighborhood effect.
arXiv Detail & Related papers (2024-04-30T15:20:41Z) - Exploring Popularity Bias in Session-based Recommendation [0.6798775532273751]
We extend the analysis to session-based setup and adapted propensity calculation to the unique characteristics of session-based recommendation tasks.
We study the distributions of propensity and different stratification techniques on different datasets and find that propensity-related traits are actually dataset-specific.
arXiv Detail & Related papers (2023-12-13T02:48:35Z) - Federated Privacy-preserving Collaborative Filtering for On-Device Next
App Prediction [52.16923290335873]
We propose a novel SeqMF model to solve the problem of predicting the next app launch during mobile device usage.
We modify the structure of the classical matrix factorization model and update the training procedure to sequential learning.
One more ingredient of the proposed approach is a new privacy mechanism that guarantees the protection of the sent data from the users to the remote server.
arXiv Detail & Related papers (2023-02-05T10:29:57Z) - Cross-Dataset Propensity Estimation for Debiasing Recommender Systems [5.449173263947196]
We study the impact of selection bias on datasets with different quantization.
We then leverage two differently quantized datasets from different source distributions to mitigate distribution shift.
arXiv Detail & Related papers (2022-12-22T03:04:14Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.