POIBERT: A Transformer-based Model for the Tour Recommendation Problem
- URL: http://arxiv.org/abs/2212.13900v1
- Date: Fri, 16 Dec 2022 12:32:15 GMT
- Title: POIBERT: A Transformer-based Model for the Tour Recommendation Problem
- Authors: Ngai Lam Ho and Kwan Hui Lim
- Abstract summary: We propose POIBERT, an algorithm for recommending personalized itineraries using the BERT language model on POIs.
Our recommendation algorithm is able to generate a sequence of POIs that optimize time and users' preference in POI categories based on past trajectories from similar tourists.
- Score: 0.3121997724420106
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tour itinerary planning and recommendation are challenging problems for
tourists visiting unfamiliar cities. Many tour recommendation algorithms only
consider factors such as the location and popularity of Points of Interest
(POIs) but their solutions may not align well with the user's own preferences
and other location constraints. Additionally, these solutions do not take into
consideration of the users' preference based on their past POIs selection. In
this paper, we propose POIBERT, an algorithm for recommending personalized
itineraries using the BERT language model on POIs. POIBERT builds upon the
highly successful BERT language model with the novel adaptation of a language
model to our itinerary recommendation task, alongside an iterative approach to
generate consecutive POIs.
Our recommendation algorithm is able to generate a sequence of POIs that
optimizes time and users' preference in POI categories based on past
trajectories from similar tourists. Our tour recommendation algorithm is
modeled by adapting the itinerary recommendation problem to the sentence
completion problem in natural language processing (NLP). We also innovate an
iterative algorithm to generate travel itineraries that satisfies the time
constraints which is most likely from past trajectories. Using a Flickr dataset
of seven cities, experimental results show that our algorithm out-performs many
sequence prediction algorithms based on measures in recall, precision and
F1-scores.
Related papers
- Pre-trained Language Model and Knowledge Distillation for Lightweight Sequential Recommendation [51.25461871988366]
We propose a sequential recommendation algorithm based on a pre-trained language model and knowledge distillation.
The proposed algorithm enhances recommendation accuracy and provide timely recommendation services.
arXiv Detail & Related papers (2024-09-23T08:39:07Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs.
We perform objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention.
Experiments demonstrate the state-of-the-art performance of DiscoPOP, a novel algorithm that adaptively blends logistic and exponential losses.
arXiv Detail & Related papers (2024-06-12T16:58:41Z) - Utilizing Language Models for Tour Itinerary Recommendation [2.5128274367283785]
Tour itinerary recommendation involves planning a sequence of relevant Point-of-Interest (POIs)
This paper explores the use of language models for the task of tour itinerary recommendation and planning.
arXiv Detail & Related papers (2023-11-21T05:15:56Z) - SBTRec- A Transformer Framework for Personalized Tour Recommendation
Problem with Sentiment Analysis [6.753123338256321]
SBTRec is a BERT-based Trajectory Recommendation with sentiment analysis.
It learns users' preferences and satisfaction levels from reviews and comments about different POIs.
It achieves an average F1 score of 61.45%, outperforming baseline algorithms.
arXiv Detail & Related papers (2023-11-18T13:30:01Z) - BTRec: BERT-Based Trajectory Recommendation for Personalized Tours [6.753123338256321]
Many tour recommendation tools only take into account a limited number of factors, such as popular Points of Interest (POIs) and routing constraints.
We propose an iterative algorithm in this paper, namely: BTREC (BERT-based Trajectory Recommendation), that extends from the POIBERT embedding algorithm to recommend personalized itineraries on POIs.
Our recommendation system can create a travel itinerary that maximizes POIs visited, while also taking into account user preferences for categories of POIs and time availability.
arXiv Detail & Related papers (2023-10-30T18:00:26Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms.
For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime.
In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem.
We adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon.
arXiv Detail & Related papers (2021-09-13T18:10:52Z) - DeepAltTrip: Top-k Alternative Itineraries for Trip Recommendation [4.727697892741763]
We propose a deep learning-based framework, called DeepAltTrip, that learns to recommend top-k alternative itineraries for given source and destination POIs.
For the route generation step, we propose a novel sampling algorithm that can seamlessly handle a wide variety of user-defined constraints.
arXiv Detail & Related papers (2021-09-08T10:36:59Z) - Local policy search with Bayesian optimization [73.0364959221845]
Reinforcement learning aims to find an optimal policy by interaction with an environment.
Policy gradients for local search are often obtained from random perturbations.
We develop an algorithm utilizing a probabilistic model of the objective function and its gradient.
arXiv Detail & Related papers (2021-06-22T16:07:02Z) - Attention-based neural re-ranking approach for next city in trip
recommendations [77.34726150561087]
This paper describes an approach to solving the next destination city recommendation problem for a travel reservation system.
We propose a two stages approach: an approach for candidates selection and an attention neural network model for candidates re-ranking.
arXiv Detail & Related papers (2021-03-23T11:56:40Z) - User Preferential Tour Recommendation Based on POI-Embedding Methods [0.624399544884021]
We propose an algorithm to recommend personalized tours using POI-embedding methods.
Our recommendation algorithm will generate a sequence of POIs that optimize time and locational constraints.
Preliminary experimental results show that our algorithm is able to recommend a relevant and accurate itinerary.
arXiv Detail & Related papers (2021-03-03T15:18:23Z) - Model Selection in Contextual Stochastic Bandit Problems [51.94632035240787]
We develop a meta-algorithm that selects between base algorithms.
We show through a lower bound that even when one of the base algorithms has $O(sqrtT)$ regret, in general it is impossible to get better than $Omega(sqrtT)$ regret.
arXiv Detail & Related papers (2020-03-03T18:46:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.