Utilizing Language Models for Tour Itinerary Recommendation
- URL: http://arxiv.org/abs/2311.12355v1
- Date: Tue, 21 Nov 2023 05:15:56 GMT
- Title: Utilizing Language Models for Tour Itinerary Recommendation
- Authors: Ngai Lam Ho and Kwan Hui Lim
- Abstract summary: Tour itinerary recommendation involves planning a sequence of relevant Point-of-Interest (POIs)
This paper explores the use of language models for the task of tour itinerary recommendation and planning.
- Score: 2.5128274367283785
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tour itinerary recommendation involves planning a sequence of relevant
Point-of-Interest (POIs), which combines challenges from the fields of both
Operations Research (OR) and Recommendation Systems (RS). As an OR problem,
there is the need to maximize a certain utility (e.g., popularity of POIs in
the tour) while adhering to some constraints (e.g., maximum time for the tour).
As a RS problem, it is heavily related to problem or filtering or ranking a
subset of POIs that are relevant to a user and recommending it as part of an
itinerary. In this paper, we explore the use of language models for the task of
tour itinerary recommendation and planning. This task has the unique
requirement of recommending personalized POIs relevant to users and planning
these POIs as an itinerary that satisfies various constraints. We discuss some
approaches in this area, such as using word embedding techniques like Word2Vec
and GloVe for learning POI embeddings and transformer-based techniques like
BERT for generating
itineraries.
Related papers
- Learn to Tour: Operator Design For Solution Feasibility Mapping in Pickup-and-delivery Traveling Salesman Problem [12.34897099691387]
This paper develops a learning method for a special class of traveling salesman problems (TSP)
It finds the shortest tour along a sequence of one-to-one pickup-and-delivery nodes.
In PDTSP, precedence constraints need to be satisfied that each pickup node must be visited before its corresponding delivery node.
arXiv Detail & Related papers (2024-04-17T15:05:51Z) - BTRec: BERT-Based Trajectory Recommendation for Personalized Tours [6.753123338256321]
Many tour recommendation tools only take into account a limited number of factors, such as popular Points of Interest (POIs) and routing constraints.
We propose an iterative algorithm in this paper, namely: BTREC (BERT-based Trajectory Recommendation), that extends from the POIBERT embedding algorithm to recommend personalized itineraries on POIs.
Our recommendation system can create a travel itinerary that maximizes POIs visited, while also taking into account user preferences for categories of POIs and time availability.
arXiv Detail & Related papers (2023-10-30T18:00:26Z) - Large Language Model Augmented Narrative Driven Recommendations [51.77271767160573]
Narrative-driven recommendation (NDR) presents an information access problem where users solicit recommendations with verbose descriptions of their preferences and context.
NDR lacks abundant training data for models, and current platforms commonly do not support these requests.
We use large language models (LLMs) for data augmentation to train NDR models.
arXiv Detail & Related papers (2023-06-04T03:46:45Z) - Large Language Models are Zero-Shot Rankers for Recommender Systems [76.02500186203929]
This work aims to investigate the capacity of large language models (LLMs) to act as the ranking model for recommender systems.
We show that LLMs have promising zero-shot ranking abilities but struggle to perceive the order of historical interactions.
We demonstrate that these issues can be alleviated using specially designed prompting and bootstrapping strategies.
arXiv Detail & Related papers (2023-05-15T17:57:39Z) - Zero-shot Item-based Recommendation via Multi-task Product Knowledge
Graph Pre-Training [106.85813323510783]
This paper presents a novel paradigm for the Zero-Shot Item-based Recommendation (ZSIR) task.
It pre-trains a model on product knowledge graph (PKG) to refine the item features from PLMs.
We identify three challenges for pre-training PKG, which are multi-type relations in PKG, semantic divergence between item generic information and relations and domain discrepancy from PKG to downstream ZSIR task.
arXiv Detail & Related papers (2023-05-12T17:38:24Z) - Keypoint-Guided Optimal Transport [85.396726225935]
We propose a novel KeyPoint-Guided model by ReLation preservation (KPG-RL) that searches for the optimal matching.
The proposed KPG-RL model can be solved by Sinkhorn's algorithm and is applicable even when distributions are supported in different spaces.
Based on the learned transport plan from dual KPG-RL, we propose a novel manifold barycentric projection to transport source data to the target domain.
arXiv Detail & Related papers (2023-03-23T08:35:56Z) - POIBERT: A Transformer-based Model for the Tour Recommendation Problem [0.3121997724420106]
We propose POIBERT, an algorithm for recommending personalized itineraries using the BERT language model on POIs.
Our recommendation algorithm is able to generate a sequence of POIs that optimize time and users' preference in POI categories based on past trajectories from similar tourists.
arXiv Detail & Related papers (2022-12-16T12:32:15Z) - DeepAltTrip: Top-k Alternative Itineraries for Trip Recommendation [4.727697892741763]
We propose a deep learning-based framework, called DeepAltTrip, that learns to recommend top-k alternative itineraries for given source and destination POIs.
For the route generation step, we propose a novel sampling algorithm that can seamlessly handle a wide variety of user-defined constraints.
arXiv Detail & Related papers (2021-09-08T10:36:59Z) - Attention-based neural re-ranking approach for next city in trip
recommendations [77.34726150561087]
This paper describes an approach to solving the next destination city recommendation problem for a travel reservation system.
We propose a two stages approach: an approach for candidates selection and an attention neural network model for candidates re-ranking.
arXiv Detail & Related papers (2021-03-23T11:56:40Z) - User Preferential Tour Recommendation Based on POI-Embedding Methods [0.624399544884021]
We propose an algorithm to recommend personalized tours using POI-embedding methods.
Our recommendation algorithm will generate a sequence of POIs that optimize time and locational constraints.
Preliminary experimental results show that our algorithm is able to recommend a relevant and accurate itinerary.
arXiv Detail & Related papers (2021-03-03T15:18:23Z) - Towards Topic-Guided Conversational Recommender System [80.3725246715938]
We contribute a new CRS dataset named textbfTG-ReDial (textbfRecommendation through textbfTopic-textbfGuided textbfDialog)
We present the task of topic-guided conversational recommendation, and propose an effective approach to this task.
arXiv Detail & Related papers (2020-10-08T17:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.