論文の概要: CT-LungNet: A Deep Learning Framework for Precise Lung Tissue
Segmentation in 3D Thoracic CT Scans
- arxiv url: http://arxiv.org/abs/2212.13971v4
- Date: Wed, 26 Apr 2023 14:57:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-27 17:48:06.818026
- Title: CT-LungNet: A Deep Learning Framework for Precise Lung Tissue
Segmentation in 3D Thoracic CT Scans
- Title(参考訳): CT-LungNet : 3次元胸部CTスキャンにおける精密肺組織切開のためのディープラーニングフレームワーク
- Authors: Niloufar Delfan, Hamid Abrishami Moghaddam, Mohammadreza Modaresi,
Kimia Afshari, Kasra Nezamabadi, Neda Pak, Omid Ghaemi, Mohamad Forouzanfar
- Abstract要約: 本稿では,3次元肺CT画像中の肺をディープネットワークと転写学習を用いて同定する完全自動手法を提案する。
VESSEL12とCRPFの2つの公開データセットとトレーニングとテストのために,LUNA16という1つの公開データセットを用いて定量的に評価した。
- 参考スコア(独自算出の注目度): 1.1014741301167645
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Segmentation of lung tissue in computed tomography (CT) images is a precursor
to most pulmonary image analysis applications. Semantic segmentation methods
using deep learning have exhibited top-tier performance in recent years,
however designing accurate and robust segmentation models for lung tissue is
challenging due to the variations in shape, size, and orientation.
Additionally, medical image artifacts and noise can affect lung tissue
segmentation and degrade the accuracy of downstream analysis. The practicality
of current deep learning methods for lung tissue segmentation is limited as
they require significant computational resources and may not be easily
deployable in clinical settings. This paper presents a fully automatic method
that identifies the lungs in three-dimensional (3D) pulmonary CT images using
deep networks and transfer learning. We introduce (1) a novel 2.5-dimensional
image representation from consecutive CT slices that succinctly represents
volumetric information and (2) a U-Net architecture equipped with pre-trained
InceptionV3 blocks to segment 3D CT scans while maintaining the number of
learnable parameters as low as possible. Our method was quantitatively assessed
using one public dataset, LUNA16, for training and testing and two public
datasets, namely, VESSEL12 and CRPF, only for testing. Due to the low number of
learnable parameters, our method achieved high generalizability to the unseen
VESSEL12 and CRPF datasets while obtaining superior performance over Luna16
compared to existing methods (Dice coefficients of 99.7, 99.1, and 98.8 over
LUNA16, VESSEL12, and CRPF datasets, respectively). We made our method publicly
accessible via a graphical user interface at medvispy.ee.kntu.ac.ir.
- Abstract(参考訳): ct画像における肺組織の分節化は、ほとんどの肺画像解析応用の前駆体である。
近年, 深層学習を用いたセマンティックセグメンテーション手法は, 形状, サイズ, 方向の相違により, 肺組織に対する高精度で堅牢なセグメンテーションモデルを設計することは困難である。
さらに、医用画像アーティファクトやノイズは肺組織セグメンテーションに影響を与え、下流分析の精度を低下させる。
現在の肺組織分割のための深層学習法の実用性は、重要な計算資源を必要とし、臨床環境では容易に展開できないため限られている。
本稿では,深層ネットワークとトランスファーラーニングを用いて3次元肺ct画像中の肺を完全自動識別する手法を提案する。
本稿では,(1)容積情報を簡潔に表現する連続CTスライスからの新しい2.5次元画像表現,(2)学習可能なパラメータの数を極力低く保ちながら,事前学習したInceptionV3ブロックを備えたU-Netアーキテクチャを提案する。
VESSEL12とCRPFの2つの公開データセットとトレーニングとテストのために,LUNA16という1つの公開データセットを用いて定量的に評価した。
学習可能なパラメータの少なさから,luna16よりも優れた性能(各luna16, vessel12, crpfデータセットに対して,それぞれ99.7, 99.1, 98.8のdice係数)を得るとともに,luna16よりも高い汎用性を達成した。
我々はこの手法を medvispy.ee.kntu.ac.ir のグラフィカルユーザインタフェースを通じて一般公開した。
関連論文リスト
- Robust deep labeling of radiological emphysema subtypes using squeeze
and excitation convolutional neural networks: The MESA Lung and SPIROMICS
Studies [34.200556207264974]
肺気腫は進行性で不可逆的な肺組織喪失である。
最近の研究は、肺CTにおける空間的インフォームド肺テクスチャパターン(ss)の教師なし学習につながっている。
肺CT上のss CNNとCTESの教師あり分類のための3次元圧縮・励起モデルを提案する。
論文 参考訳(メタデータ) (2024-03-01T03:45:56Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
医用画像の領域分割を行うために, SAMを2次元から3次元に変換する新しい適応法を提案する。
本モデルでは, 腎腫瘍, 膵腫瘍, 大腸癌の3つのタスクのうち8.25%, 29.87%, 10.11%の3つのタスクにおいて, ドメイン・オブ・ザ・アーティヴ・メディカル・イメージ・セグメンテーション・モデルより優れ, 肝腫瘍セグメンテーションでも同様の性能が得られる。
論文 参考訳(メタデータ) (2023-06-23T12:09:52Z) - MESAHA-Net: Multi-Encoders based Self-Adaptive Hard Attention Network
with Maximum Intensity Projections for Lung Nodule Segmentation in CT Scan [6.266053305874546]
マルチエンコーダをベースとした自己適応型ハードアテンションネットワーク(MESAHA-Net)をCTスキャンの高精度な肺結節分割のための効率的なエンドツーエンドフレームワークとして提案する。
MESAHA-Netは、肺結節のスライス・バイ・スライス2Dセグメンテーションを反復的に行い、各スライス内の結節領域に着目して肺結節の3Dセグメンテーションを生成する。
LIDC-IDRIデータセットは,肺結節セグメンテーションのための最大公用データセットである。
論文 参考訳(メタデータ) (2023-04-04T07:05:15Z) - Dual Multi-scale Mean Teacher Network for Semi-supervised Infection
Segmentation in Chest CT Volume for COVID-19 [76.51091445670596]
CT(Computed tomography)データから肺感染症を自動的に検出することは、COVID-19と戦う上で重要な役割を担っている。
現在の新型コロナウイルス感染症のセグメンテーションのほとんどは、主に3Dシーケンシャルな制約を欠いた2D CT画像に依存している。
既存の3次元CTセグメンテーション法では,3次元ボリュームにおける複数レベルの受容場サイズを達成できない単一スケールの表現に焦点が当てられている。
論文 参考訳(メタデータ) (2022-11-10T13:11:21Z) - Pulmonary Vessel Segmentation based on Orthogonal Fused U-Net++ of Chest
CT Images [1.8692254863855962]
胸部CT画像から肺血管セグメンテーションの枠組みと改善過程について検討した。
アプローチの鍵となるのは、3つの軸から2.5D区分けネットワークを応用し、堅牢で完全に自動化された肺血管区分け結果を示す。
提案手法は,他のネットワーク構造よりも大きなマージンで優れ,平均DICEスコア0.9272,精度0.9310を極端に上回っている。
論文 参考訳(メタデータ) (2021-07-03T21:46:29Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
我々は,深部畳み込み神経網のアンサンブルを用いた肺CTスキャンのセグメンテーションによるアプローチを採用した。
本モデルを用いて, 病変の分類, 患者の動態の評価, 病変による肺の相対体積の推定, 肺の損傷ステージの評価が可能となった。
論文 参考訳(メタデータ) (2021-05-25T12:06:55Z) - COVID-19 identification from volumetric chest CT scans using a
progressively resized 3D-CNN incorporating segmentation, augmentation, and
class-rebalancing [4.446085353384894]
新型コロナウイルスは世界的なパンデミックの流行だ。
高い感度のコンピュータ支援スクリーニングツールは、疾患の診断と予後に不可欠である。
本稿では,3次元畳み込みニューラルネットワーク(CNN)に基づく分類手法を提案する。
論文 参考訳(メタデータ) (2021-02-11T18:16:18Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
マルチタスク型マルチスライス深層学習システム(M3Lung-Sys)を提案する。
COVID-19とHealthy, H1N1, CAPとの鑑別に加えて, M3 Lung-Sysも関連病変の部位を特定できる。
論文 参考訳(メタデータ) (2020-10-07T06:22:24Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
3次元CT画像におけるCOVID-19の重症度自動評価のための相乗的学習フレームワークを提案する。
マルチタスクのディープネットワーク(M$2$UNet)が開発され、新型コロナウイルス患者の重症度を評価する。
われわれのM$2$UNetはパッチレベルのエンコーダと肺葉分画のためのセグメンテーションサブネットワークと重度評価のための分類サブネットワークから構成されている。
論文 参考訳(メタデータ) (2020-05-08T03:16:15Z) - U-Det: A Modified U-Net architecture with bidirectional feature network
for lung nodule segmentation [0.0]
本稿では,資源効率のよいモデルアーキテクチャであるU-Detを提案する。
提案モデルは,1186個の肺結節からなるLUNA-16データセットを用いて,広範囲に訓練および評価を行った。
U-Detアーキテクチャは既存のU-Netモデルを82.82%のDice類似度係数(DSC)で上回り、人間の専門家に匹敵する結果が得られる。
論文 参考訳(メタデータ) (2020-03-20T14:25:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。