Persistence-based operators in machine learning
- URL: http://arxiv.org/abs/2212.13985v1
- Date: Wed, 28 Dec 2022 18:03:41 GMT
- Title: Persistence-based operators in machine learning
- Authors: Mattia G. Bergomi, Massimo Ferri, Alessandro Mella, Pietro Vertechi
- Abstract summary: We introduce a class of persistence-based neural network layers.
Persistence-based layers allow the users to easily inject knowledge about symmetries respected by the data, are equipped with learnable weights, and can be composed with state-of-the-art neural architectures.
- Score: 62.997667081978825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial neural networks can learn complex, salient data features to
achieve a given task. On the opposite end of the spectrum, mathematically
grounded methods such as topological data analysis allow users to design
analysis pipelines fully aware of data constraints and symmetries. We introduce
a class of persistence-based neural network layers. Persistence-based layers
allow the users to easily inject knowledge about symmetries (equivariance)
respected by the data, are equipped with learnable weights, and can be composed
with state-of-the-art neural architectures.
Related papers
- Statistical tuning of artificial neural network [0.0]
This study introduces methods to enhance the understanding of neural networks, focusing specifically on models with a single hidden layer.
We propose statistical tests to assess the significance of input neurons and introduce algorithms for dimensionality reduction.
This research advances the field of Explainable Artificial Intelligence by presenting robust statistical frameworks for interpreting neural networks.
arXiv Detail & Related papers (2024-09-24T19:47:03Z) - Steinmetz Neural Networks for Complex-Valued Data [23.80312814400945]
We introduce a new approach to processing complex-valued data using DNNs consisting of parallel real-valuedetzworks with coupled outputs.
Our proposed class of architectures, referred to as Steinmetz Neural Networks, leverage multi-view learning to construct more interpretable representations within the latent space.
Our numerical experiments depict the improved performance and to additive noise, afforded by these networks on benchmark datasets and synthetic examples.
arXiv Detail & Related papers (2024-09-16T08:26:06Z) - Nonlinear classification of neural manifolds with contextual information [6.292933471495322]
manifold capacity has emerged as a promising framework linking population geometry to the separability of neural manifold.
We propose a theoretical framework that overcomes this limitation by leveraging contextual input information.
Our framework's increased expressivity captures representation untanglement in deep networks at early stages of the layer hierarchy, previously inaccessible to analysis.
arXiv Detail & Related papers (2024-05-10T23:37:31Z) - The Role of Foundation Models in Neuro-Symbolic Learning and Reasoning [54.56905063752427]
Neuro-Symbolic AI (NeSy) holds promise to ensure the safe deployment of AI systems.
Existing pipelines that train the neural and symbolic components sequentially require extensive labelling.
New architecture, NeSyGPT, fine-tunes a vision-language foundation model to extract symbolic features from raw data.
arXiv Detail & Related papers (2024-02-02T20:33:14Z) - Neural Koopman prior for data assimilation [7.875955593012905]
We use a neural network architecture to embed dynamical systems in latent spaces.
We introduce methods that enable to train such a model for long-term continuous reconstruction.
The potential for self-supervised learning is also demonstrated, as we show the promising use of trained dynamical models as priors for variational data assimilation techniques.
arXiv Detail & Related papers (2023-09-11T09:04:36Z) - Quasi-orthogonality and intrinsic dimensions as measures of learning and
generalisation [55.80128181112308]
We show that dimensionality and quasi-orthogonality of neural networks' feature space may jointly serve as network's performance discriminants.
Our findings suggest important relationships between the networks' final performance and properties of their randomly initialised feature spaces.
arXiv Detail & Related papers (2022-03-30T21:47:32Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Neural networks adapting to datasets: learning network size and topology [77.34726150561087]
We introduce a flexible setup allowing for a neural network to learn both its size and topology during the course of a gradient-based training.
The resulting network has the structure of a graph tailored to the particular learning task and dataset.
arXiv Detail & Related papers (2020-06-22T12:46:44Z) - Complexity for deep neural networks and other characteristics of deep
feature representations [0.0]
We define a notion of complexity, which quantifies the nonlinearity of the computation of a neural network.
We investigate these observables both for trained networks as well as explore their dynamics during training.
arXiv Detail & Related papers (2020-06-08T17:59:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.