Characteristics-Informed Neural Networks for Forward and Inverse
Hyperbolic Problems
- URL: http://arxiv.org/abs/2212.14012v1
- Date: Wed, 28 Dec 2022 18:38:53 GMT
- Title: Characteristics-Informed Neural Networks for Forward and Inverse
Hyperbolic Problems
- Authors: Ulisses Braga-Neto
- Abstract summary: We propose characteristic-informed neural networks (CINN) for solving forward and inverse problems involving hyperbolic PDEs.
CINN encodes the characteristics of the PDE in a general-purpose deep neural network trained with the usual MSE data-fitting regression loss.
Preliminary results indicate that CINN is able to improve on the accuracy of the baseline PINN, while being nearly twice as fast to train and avoiding non-physical solutions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose characteristic-informed neural networks (CINN), a simple and
efficient machine learning approach for solving forward and inverse problems
involving hyperbolic PDEs. Like physics-informed neural networks (PINN), CINN
is a meshless machine learning solver with universal approximation
capabilities. Unlike PINN, which enforces a PDE softly via a multi-part loss
function, CINN encodes the characteristics of the PDE in a general-purpose deep
neural network trained with the usual MSE data-fitting regression loss and
standard deep learning optimization methods. This leads to faster training and
can avoid well-known pathologies of gradient descent optimization of multi-part
PINN loss functions. If the characteristic ODEs can be solved exactly, which is
true in important cases, the output of a CINN is an exact solution of the PDE,
even at initialization, preventing the occurrence of non-physical outputs.
Otherwise, the ODEs must be solved approximately, but the CINN is still trained
only using a data-fitting loss function. The performance of CINN is assessed
empirically in forward and inverse linear hyperbolic problems. These
preliminary results indicate that CINN is able to improve on the accuracy of
the baseline PINN, while being nearly twice as fast to train and avoiding
non-physical solutions. Future extensions to hyperbolic PDE systems and
nonlinear PDEs are also briefly discussed.
Related papers
- Binary structured physics-informed neural networks for solving equations
with rapidly changing solutions [3.6415476576196055]
Physics-informed neural networks (PINNs) have emerged as a promising approach for solving partial differential equations (PDEs)
We propose a binary structured physics-informed neural network (BsPINN) framework, which employs binary structured neural network (BsNN) as the neural network component.
BsPINNs exhibit superior convergence speed and heightened accuracy compared to PINNs.
arXiv Detail & Related papers (2024-01-23T14:37:51Z) - PINNsFormer: A Transformer-Based Framework For Physics-Informed Neural Networks [22.39904196850583]
Physics-Informed Neural Networks (PINNs) have emerged as a promising deep learning framework for approximating numerical solutions to partial differential equations (PDEs)
We introduce a novel Transformer-based framework, termed PINNsFormer, designed to address this limitation.
PINNsFormer achieves superior generalization ability and accuracy across various scenarios, including PINNs failure modes and high-dimensional PDEs.
arXiv Detail & Related papers (2023-07-21T18:06:27Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Enforcing Continuous Physical Symmetries in Deep Learning Network for
Solving Partial Differential Equations [3.6317085868198467]
We introduce a new method, symmetry-enhanced physics informed neural network (SPINN) where the invariant surface conditions induced by the Lie symmetries of PDEs are embedded into the loss function of PINN.
We show that SPINN performs better than PINN with fewer training points and simpler architecture of neural network.
arXiv Detail & Related papers (2022-06-19T00:44:22Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
Physics-informed neural networks (PINNs) provide a deep learning framework for numerically solving partial differential equations (PDEs)
We propose the generative adversarial neural network (GA-PINN), which integrates the generative adversarial (GA) mechanism with the structure of PINNs.
Inspired from the weighting strategy of the Adaboost method, we then introduce a point-weighting (PW) method to improve the training efficiency of PINNs.
arXiv Detail & Related papers (2022-05-18T06:50:44Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Scientific Machine Learning through Physics-Informed Neural Networks:
Where we are and What's next [5.956366179544257]
Physic-Informed Neural Networks (PINN) are neural networks (NNs) that encode model equations.
PINNs are nowadays used to solve PDEs, fractional equations, and integral-differential equations.
arXiv Detail & Related papers (2022-01-14T19:05:44Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Physics-informed attention-based neural network for solving non-linear
partial differential equations [6.103365780339364]
Physics-Informed Neural Networks (PINNs) have enabled significant improvements in modelling physical processes.
PINNs are based on simple architectures, and learn the behavior of complex physical systems by optimizing the network parameters to minimize the residual of the underlying PDE.
Here, we address the question of which network architectures are best suited to learn the complex behavior of non-linear PDEs.
arXiv Detail & Related papers (2021-05-17T14:29:08Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.