Do Bayesian Variational Autoencoders Know What They Don't Know?
- URL: http://arxiv.org/abs/2212.14272v1
- Date: Thu, 29 Dec 2022 11:48:01 GMT
- Title: Do Bayesian Variational Autoencoders Know What They Don't Know?
- Authors: Misha Glazunov and Apostolis Zarras
- Abstract summary: The problem of detecting the Out-of-Distribution (OoD) inputs is paramount importance for Deep Neural Networks.
It has been previously shown that even Deep Generative Models that allow estimating the density of the inputs may not be reliable.
This paper investigates three approaches to inference: Markov chain Monte Carlo, Bayes gradient by Backpropagation and Weight Averaging-Gaussian.
- Score: 0.6091702876917279
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of detecting the Out-of-Distribution (OoD) inputs is of paramount
importance for Deep Neural Networks. It has been previously shown that even
Deep Generative Models that allow estimating the density of the inputs may not
be reliable and often tend to make over-confident predictions for OoDs,
assigning to them a higher density than to the in-distribution data. This
over-confidence in a single model can be potentially mitigated with Bayesian
inference over the model parameters that take into account epistemic
uncertainty. This paper investigates three approaches to Bayesian inference:
stochastic gradient Markov chain Monte Carlo, Bayes by Backpropagation, and
Stochastic Weight Averaging-Gaussian. The inference is implemented over the
weights of the deep neural networks that parameterize the likelihood of the
Variational Autoencoder. We empirically evaluate the approaches against several
benchmarks that are often used for OoD detection: estimation of the marginal
likelihood utilizing sampled model ensemble, typicality test, disagreement
score, and Watanabe-Akaike Information Criterion. Finally, we introduce two
simple scores that demonstrate the state-of-the-art performance.
Related papers
- Confidence Aware Learning for Reliable Face Anti-spoofing [52.23271636362843]
We propose a Confidence Aware Face Anti-spoofing model, which is aware of its capability boundary.
We estimate its confidence during the prediction of each sample.
Experiments show that the proposed CA-FAS can effectively recognize samples with low prediction confidence.
arXiv Detail & Related papers (2024-11-02T14:29:02Z) - Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models [0.0]
We show how diffusion-based models can be repurposed for performing principled, identifiable Bayesian inference.
We show how such maps can be learned via standard DBM training using a novel noise schedule.
The result is a class of highly expressive generative models, uniquely defined on a low-dimensional latent space.
arXiv Detail & Related papers (2024-07-11T19:58:19Z) - Evidence Networks: simple losses for fast, amortized, neural Bayesian
model comparison [0.0]
Evidence Networks can enable Bayesian model comparison when state-of-the-art methods fail.
We introduce the leaky parity-odd power transform, leading to the novel l-POP-Exponential'' loss function.
We show that Evidence Networks are explicitly independent of dimensionality of the parameter space and scale mildly with the complexity of the posterior probability density function.
arXiv Detail & Related papers (2023-05-18T18:14:53Z) - Diffusion Causal Models for Counterfactual Estimation [18.438307666925425]
We consider the task of counterfactual estimation from observational imaging data given a known causal structure.
We propose Diff-SCM, a deep structural causal model that builds on recent advances of generative energy-based models.
We find that Diff-SCM produces more realistic and minimal counterfactuals than baselines on MNIST data and can also be applied to ImageNet data.
arXiv Detail & Related papers (2022-02-21T12:23:01Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
Deep neural networks often make inaccurate predictions with unreliable uncertainty estimates.
We derive a Bayesian model that provides for a well-defined relationship between unlabeled inputs under distributional shift and model parameters.
We show that our method improves both accuracy and uncertainty estimation.
arXiv Detail & Related papers (2021-09-27T01:09:08Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - Ramifications of Approximate Posterior Inference for Bayesian Deep
Learning in Adversarial and Out-of-Distribution Settings [7.476901945542385]
We show that Bayesian deep learning models on certain occasions marginally outperform conventional neural networks.
Preliminary investigations indicate the potential inherent role of bias due to choices of initialisation, architecture or activation functions.
arXiv Detail & Related papers (2020-09-03T16:58:15Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z) - Bayesian Deep Learning and a Probabilistic Perspective of Generalization [56.69671152009899]
We show that deep ensembles provide an effective mechanism for approximate Bayesian marginalization.
We also propose a related approach that further improves the predictive distribution by marginalizing within basins of attraction.
arXiv Detail & Related papers (2020-02-20T15:13:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.