Ramifications of Approximate Posterior Inference for Bayesian Deep
Learning in Adversarial and Out-of-Distribution Settings
- URL: http://arxiv.org/abs/2009.01798v2
- Date: Sat, 3 Oct 2020 14:46:06 GMT
- Title: Ramifications of Approximate Posterior Inference for Bayesian Deep
Learning in Adversarial and Out-of-Distribution Settings
- Authors: John Mitros and Arjun Pakrashi and Brian Mac Namee
- Abstract summary: We show that Bayesian deep learning models on certain occasions marginally outperform conventional neural networks.
Preliminary investigations indicate the potential inherent role of bias due to choices of initialisation, architecture or activation functions.
- Score: 7.476901945542385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks have been successful in diverse discriminative
classification tasks, although, they are poorly calibrated often assigning high
probability to misclassified predictions. Potential consequences could lead to
trustworthiness and accountability of the models when deployed in real
applications, where predictions are evaluated based on their confidence scores.
Existing solutions suggest the benefits attained by combining deep neural
networks and Bayesian inference to quantify uncertainty over the models'
predictions for ambiguous datapoints. In this work we propose to validate and
test the efficacy of likelihood based models in the task of out of distribution
detection (OoD). Across different datasets and metrics we show that Bayesian
deep learning models on certain occasions marginally outperform conventional
neural networks and in the event of minimal overlap between in/out distribution
classes, even the best models exhibit a reduction in AUC scores in detecting
OoD data. Preliminary investigations indicate the potential inherent role of
bias due to choices of initialisation, architecture or activation functions. We
hypothesise that the sensitivity of neural networks to unseen inputs could be a
multi-factor phenomenon arising from the different architectural design choices
often amplified by the curse of dimensionality. Furthermore, we perform a study
to find the effect of the adversarial noise resistance methods on in and
out-of-distribution performance, as well as, also investigate adversarial noise
robustness of Bayesian deep learners.
Related papers
- Gaussian Mixture Models for Affordance Learning using Bayesian Networks [50.18477618198277]
Affordances are fundamental descriptors of relationships between actions, objects and effects.
This paper approaches the problem of an embodied agent exploring the world and learning these affordances autonomously from its sensory experiences.
arXiv Detail & Related papers (2024-02-08T22:05:45Z) - Neural State-Space Models: Empirical Evaluation of Uncertainty
Quantification [0.0]
This paper presents preliminary results on uncertainty quantification for system identification with neural state-space models.
We frame the learning problem in a Bayesian probabilistic setting and obtain posterior distributions for the neural network's weights and outputs.
Based on the posterior, we construct credible intervals on the outputs and define a surprise index which can effectively diagnose usage of the model in a potentially dangerous out-of-distribution regime.
arXiv Detail & Related papers (2023-04-13T08:57:33Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Toward Robust Uncertainty Estimation with Random Activation Functions [3.0586855806896045]
We propose a novel approach for uncertainty quantification via ensembles, called Random Activation Functions (RAFs) Ensemble.
RAFs Ensemble outperforms state-of-the-art ensemble uncertainty quantification methods on both synthetic and real-world datasets.
arXiv Detail & Related papers (2023-02-28T13:17:56Z) - Do Bayesian Variational Autoencoders Know What They Don't Know? [0.6091702876917279]
The problem of detecting the Out-of-Distribution (OoD) inputs is paramount importance for Deep Neural Networks.
It has been previously shown that even Deep Generative Models that allow estimating the density of the inputs may not be reliable.
This paper investigates three approaches to inference: Markov chain Monte Carlo, Bayes gradient by Backpropagation and Weight Averaging-Gaussian.
arXiv Detail & Related papers (2022-12-29T11:48:01Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
A major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks.
This study presents the concept of residual error, a new performance measure for assessing the adversarial robustness of a deep neural network.
Experimental results using the case of image classification demonstrate the effectiveness and efficacy of the proposed residual error metric.
arXiv Detail & Related papers (2021-06-18T16:34:23Z) - Calibration and Uncertainty Quantification of Bayesian Convolutional
Neural Networks for Geophysical Applications [0.0]
It is common to incorporate the uncertainty of predictions such subsurface models should provide calibrated probabilities and the associated uncertainties in their predictions.
It has been shown that popular Deep Learning-based models are often miscalibrated, and due to their deterministic nature, provide no means to interpret the uncertainty of their predictions.
We compare three different approaches obtaining probabilistic models based on convolutional neural networks in a Bayesian formalism.
arXiv Detail & Related papers (2021-05-25T17:54:23Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Towards Trustworthy Predictions from Deep Neural Networks with Fast
Adversarial Calibration [2.8935588665357077]
We propose an efficient yet general modelling approach for obtaining well-calibrated, trustworthy probabilities for samples obtained after a domain shift.
We introduce a new training strategy combining an entropy-encouraging loss term with an adversarial calibration loss term and demonstrate that this results in well-calibrated and technically trustworthy predictions.
arXiv Detail & Related papers (2020-12-20T13:39:29Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.