Probability transport on the Fock space of a disordered quantum spin
chain
- URL: http://arxiv.org/abs/2212.14333v1
- Date: Thu, 29 Dec 2022 14:58:41 GMT
- Title: Probability transport on the Fock space of a disordered quantum spin
chain
- Authors: Isabel Creed, David E. Logan, and Sthitadhi Roy
- Abstract summary: We describe the temporal evolution of out-of-equilibrium disordered quantum states and probability transport on the Fock space.
Real-time dynamics/probability transport is shown to exhibit a rich phenomenology, which is markedly different between the ergodic and many-body localised phases.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Within the broad theme of understanding the dynamics of disordered quantum
many-body systems, one of the simplest questions one can ask is: given an
initial state, how does it evolve in time on the associated Fock-space graph,
in terms of the distribution of probabilities thereon? A detailed quantitative
description of the temporal evolution of out-of-equilibrium disordered quantum
states and probability transport on the Fock space, is our central aim here. We
investigate it in the context of a disordered quantum spin chain which hosts a
disorder-driven many-body localisation transition. Real-time
dynamics/probability transport is shown to exhibit a rich phenomenology, which
is markedly different between the ergodic and many-body localised phases. The
dynamics is for example found to be strongly inhomogeneous at intermediate
times in both phases, but while it gives way to homogeneity at long times in
the ergodic phase, the dynamics remain inhomogeneous and multifractal in nature
for arbitrarily long times in the localised phase. Similarly, we show that an
appropriately defined dynamical lengthscale on the Fock-space graph is directly
related to the local spin-autocorrelation, and as such sheds light on the
(anomalous) decay of the autocorrelation in the ergodic phase, and lack of it
in the localised phase.
Related papers
- Exploring Hilbert-Space Fragmentation on a Superconducting Processor [23.39066473461786]
Isolated interacting quantum systems generally thermalize, yet there are several counterexamples for the breakdown of ergodicity.
Recently, ergodicity breaking has been observed in systems subjected to linear potentials, termed Stark many-body localization.
Here, we experimentally explore initial-state dependent dynamics using a ladder-type superconducting processor with up to 24 qubits.
arXiv Detail & Related papers (2024-03-14T04:39:14Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Metastable discrete time-crystal resonances in a dissipative central
spin system [0.0]
Generalizing the theory of metastability in open quantum systems, we develop an effective description for the evolution within a long-lived metastable subspace.
Our study links to timely questions concerning emergent collective behavior in the 'prethermal' stage of a dissipative quantum many-body evolution.
arXiv Detail & Related papers (2022-05-23T12:27:09Z) - Predicting Critical Phases from Entanglement Dynamics in XXZ Alternating
Chain [0.0]
The quantum XXZ spin model with alternating bond strengths under magnetic field has a rich equilibrium phase diagram.
We show that the nearest neighbor bipartite and multipartite entanglement can detect quantum critical lines and phases in this model.
arXiv Detail & Related papers (2021-12-22T18:02:51Z) - Peratic Phase Transition by Bulk-to-Surface Response [26.49714398456829]
We show a duality between many-body dynamics and static Hamiltonian ground states for both classical and quantum systems.
Our prediction of peratic phase transition has direct consequences in quantum simulation platforms such as Rydberg atoms and superconducting qubits.
arXiv Detail & Related papers (2021-09-27T18:00:01Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Exceptional Dynamical Quantum Phase Transitions in Periodically Driven
Systems [0.0]
We show that spontaneous symmetry breaking can occur at a short-time regime.
Our results open up research for hitherto unknown phases in short-time regimes.
arXiv Detail & Related papers (2020-12-22T04:04:56Z) - Disorder in dissipation-induced topological states: Evidence for a
different type of localization transition [0.0]
We study the effect of disorder on dissipation-introduced Chern topological states.
We show that the critical exponent $nu$ describing the divergence of the localization length upon approaching the delocalized state is significantly different from equilibrium if disorder is introduced into the non-dissipative part of the dynamics.
arXiv Detail & Related papers (2020-11-19T09:11:33Z) - Anomalous dynamics in the ergodic side of the Many-Body Localization
transition and the glassy phase of Directed Polymers in Random Media [11.278111020737132]
We show the existence of a glass transition within the extended regime separating a metallic-like phase at small disorder.
We relate the dynamical evolution in the glassy phase to the depinning transition of Directed Polymers.
By comparing the quantum dynamics on loop-less Cayley trees and Random Regular Graphs we discuss the effect of loops.
arXiv Detail & Related papers (2020-03-21T11:02:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.