Detecting Change Intervals with Isolation Distributional Kernel
- URL: http://arxiv.org/abs/2212.14630v3
- Date: Thu, 18 Jan 2024 12:31:30 GMT
- Title: Detecting Change Intervals with Isolation Distributional Kernel
- Authors: Yang Cao, Ye Zhu, Kai Ming Ting, Flora D. Salim, Hong Xian Li, Luxing
Yang, Gang Li
- Abstract summary: We are first to generalise the CPD problem as a special case of the Change-Interval Detection (CID) problem.
We propose a CID method, named iCID, based on a recent Isolation Distributional Kernel (IDK)
The effectiveness and efficiency of iCID have been systematically verified on both synthetic and real-world datasets.
- Score: 20.629723195973412
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting abrupt changes in data distribution is one of the most significant
tasks in streaming data analysis. Although many unsupervised Change-Point
Detection (CPD) methods have been proposed recently to identify those changes,
they still suffer from missing subtle changes, poor scalability, or/and
sensitivity to outliers. To meet these challenges, we are the first to
generalise the CPD problem as a special case of the Change-Interval Detection
(CID) problem. Then we propose a CID method, named iCID, based on a recent
Isolation Distributional Kernel (IDK). iCID identifies the change interval if
there is a high dissimilarity score between two non-homogeneous temporal
adjacent intervals. The data-dependent property and finite feature map of IDK
enabled iCID to efficiently identify various types of change-points in data
streams with the tolerance of outliers. Moreover, the proposed online and
offline versions of iCID have the ability to optimise key parameter settings.
The effectiveness and efficiency of iCID have been systematically verified on
both synthetic and real-world datasets.
Related papers
- Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - Partially-Observable Sequential Change-Point Detection for Autocorrelated Data via Upper Confidence Region [12.645304808491309]
We propose a detection scheme called adaptive upper confidence region with state space model (AUCRSS) for sequential change point detection.
A partially-observable Kalman filter algorithm is developed for online inference of SSM, and accordingly, a change point detection scheme based on a generalized likelihood ratio test is analyzed.
arXiv Detail & Related papers (2024-03-30T02:32:53Z) - Multi-channel Time Series Decomposition Network For Generalizable Sensor-Based Activity Recognition [2.024925013349319]
This paper proposes a new method, Multi-channel Time Series Decomposition Network (MTSDNet)
It decomposes the original signal into a combination of multiple components and trigonometric functions by the trainable parameterized temporal decomposition.
It shows the advantages in predicting accuracy and stability of our method compared with other competing strategies.
arXiv Detail & Related papers (2024-03-28T12:54:06Z) - DAGnosis: Localized Identification of Data Inconsistencies using
Structures [73.39285449012255]
Identification and appropriate handling of inconsistencies in data at deployment time is crucial to reliably use machine learning models.
We use directed acyclic graphs (DAGs) to encode the training set's features probability distribution and independencies as a structure.
Our method, called DAGnosis, leverages these structural interactions to bring valuable and insightful data-centric conclusions.
arXiv Detail & Related papers (2024-02-26T11:29:16Z) - Greedy online change point detection [0.0]
Greedy Online Change Point Detection (GOCPD) is a computationally appealing method which finds change points by maximizing the probability of the data coming from the (temporal) concatenation of two independent models.
We show that, for time series with a single change point, this objective is unimodal and thus CPD can be accelerated via ternary search with logarithmic complexity.
arXiv Detail & Related papers (2023-08-14T08:59:59Z) - Sequential Attention Source Identification Based on Feature
Representation [88.05527934953311]
This paper proposes a sequence-to-sequence based localization framework called Temporal-sequence based Graph Attention Source Identification (TGASI) based on an inductive learning idea.
It's worth mentioning that the inductive learning idea ensures that TGASI can detect the sources in new scenarios without knowing other prior knowledge.
arXiv Detail & Related papers (2023-06-28T03:00:28Z) - DCID: Deep Canonical Information Decomposition [84.59396326810085]
We consider the problem of identifying the signal shared between two one-dimensional target variables.
We propose ICM, an evaluation metric which can be used in the presence of ground-truth labels.
We also propose Deep Canonical Information Decomposition (DCID) - a simple, yet effective approach for learning the shared variables.
arXiv Detail & Related papers (2023-06-27T16:59:06Z) - Partially Observable Online Change Detection via Smooth-Sparse
Decomposition [16.8028358824706]
We consider online change detection of high dimensional data streams with sparse changes, where only a subset of data streams can be observed at each sensing time point due to limited sensing capacities.
On the one hand, the detection scheme should be able to deal with partially observable data and meanwhile have efficient detection power for sparse changes.
In this paper, we propose a novel detection scheme called CDSSD. In particular, it describes the structure of high dimensional data with sparse changes by smooth-sparse decomposition.
arXiv Detail & Related papers (2020-09-22T16:03:04Z) - Change Point Detection in Time Series Data using Autoencoders with a
Time-Invariant Representation [69.34035527763916]
Change point detection (CPD) aims to locate abrupt property changes in time series data.
Recent CPD methods demonstrated the potential of using deep learning techniques, but often lack the ability to identify more subtle changes in the autocorrelation statistics of the signal.
We employ an autoencoder-based methodology with a novel loss function, through which the used autoencoders learn a partially time-invariant representation that is tailored for CPD.
arXiv Detail & Related papers (2020-08-21T15:03:21Z) - A Unified Theory of Decentralized SGD with Changing Topology and Local
Updates [70.9701218475002]
We introduce a unified convergence analysis of decentralized communication methods.
We derive universal convergence rates for several applications.
Our proofs rely on weak assumptions.
arXiv Detail & Related papers (2020-03-23T17:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.