Multiresolution Analysis and Statistical Thresholding on Dynamic Networks
- URL: http://arxiv.org/abs/2506.01208v2
- Date: Tue, 01 Jul 2025 09:21:04 GMT
- Title: Multiresolution Analysis and Statistical Thresholding on Dynamic Networks
- Authors: Raphaƫl Romero, Tijl De Bie, Nick Heard, Alexander Modell,
- Abstract summary: ANIE (Adaptive Network Intensity Estimation) is a multi-resolution framework designed to automatically identify the time scales at which network structure evolves.<n>We show that ANIE adapts to the appropriate time resolution and is able to capture sharp structural changes while remaining robust to noise.
- Score: 49.09073800467438
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting structural change in dynamic network data has wide-ranging applications. Existing approaches typically divide the data into time bins, extract network features within each bin, and then compare these features over time. This introduces an inherent tradeoff between temporal resolution and the statistical stability of the extracted features. Despite this tradeoff, reminiscent of time-frequency tradeoffs in signal processing, most methods rely on a fixed temporal resolution. Choosing an appropriate resolution parameter is typically difficult and can be especially problematic in domains like cybersecurity, where anomalous behavior may emerge at multiple time scales. We address this challenge by proposing ANIE (Adaptive Network Intensity Estimation), a multi-resolution framework designed to automatically identify the time scales at which network structure evolves, enabling the joint detection of both rapid and gradual changes. Modeling interactions as Poisson processes, our method proceeds in two steps: (1) estimating a low-dimensional subspace of node behavior, and (2) deriving a set of novel empirical affinity coefficients that quantify change in interaction intensity between latent factors and support statistical testing for structural change across time scales. We provide theoretical guarantees for subspace estimation and the asymptotic behavior of the affinity coefficients, enabling model-based change detection. Experiments on synthetic networks show that ANIE adapts to the appropriate time resolution and is able to capture sharp structural changes while remaining robust to noise. Furthermore, applications to real-world data showcase the practical benefits of ANIE's multiresolution approach to detecting structural change over fixed resolution methods.
Related papers
- A Novel Spatiotemporal Correlation Anomaly Detection Method Based on Time-Frequency-Domain Feature Fusion and a Dynamic Graph Neural Network in Wireless Sensor Network [9.031267813814118]
Attention-based transformers have played an important role in wireless sensor network (WSN) timing anomaly detection due to their ability to capture long-term dependencies.<n>This paper proposes a WSN anomaly detection method that integrates frequency-domain features with dynamic graph neural networks (GNN) under a designed self-encoder reconstruction framework.
arXiv Detail & Related papers (2025-02-25T04:34:18Z) - Explainable AI for Multivariate Time Series Pattern Exploration: Latent Space Visual Analytics with Temporal Fusion Transformer and Variational Autoencoders in Power Grid Event Diagnosis [1.170167705525779]
This paper proposes a novel visual analytics framework that integrates two generative AI models, Temporal Fusion Transformer (TFT) and Variational Autoencoders (VAEs)<n>It reduces complex patterns into lower-dimensional latent spaces and visualizes them in 2D using dimensionality reduction techniques such as PCA, t-SNE, and UMAP with DBSCAN.<n>The framework is demonstrated through a case study on power grid signal data, where it identifies multi-label grid event signatures, including faults and anomalies with diverse root causes.
arXiv Detail & Related papers (2024-12-20T17:41:11Z) - Fast and Reliable Probabilistic Reflectometry Inversion with Prior-Amortized Neural Posterior Estimation [73.81105275628751]
Finding all structures compatible with reflectometry data is computationally prohibitive for standard algorithms.
We address this lack of reliability with a probabilistic deep learning method that identifies all realistic structures in seconds.
Our method, Prior-Amortized Neural Posterior Estimation (PANPE), combines simulation-based inference with novel adaptive priors.
arXiv Detail & Related papers (2024-07-26T10:29:16Z) - Partially-Observable Sequential Change-Point Detection for Autocorrelated Data via Upper Confidence Region [12.645304808491309]
We propose a detection scheme called adaptive upper confidence region with state space model (AUCRSS) for sequential change point detection.
A partially-observable Kalman filter algorithm is developed for online inference of SSM, and accordingly, a change point detection scheme based on a generalized likelihood ratio test is analyzed.
arXiv Detail & Related papers (2024-03-30T02:32:53Z) - Variational Voxel Pseudo Image Tracking [127.46919555100543]
Uncertainty estimation is an important task for critical problems, such as robotics and autonomous driving.
We propose a Variational Neural Network-based version of a Voxel Pseudo Image Tracking (VPIT) method for 3D Single Object Tracking.
arXiv Detail & Related papers (2023-02-12T13:34:50Z) - Stacked Residuals of Dynamic Layers for Time Series Anomaly Detection [0.0]
We present an end-to-end differentiable neural network architecture to perform anomaly detection in multivariate time series.
The architecture is a cascade of dynamical systems designed to separate linearly predictable components of the signal.
The anomaly detector exploits the temporal structure of the prediction residuals to detect both isolated point anomalies and set-point changes.
arXiv Detail & Related papers (2022-02-25T01:50:22Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - On the reproducibility of fully convolutional neural networks for
modeling time-space evolving physical systems [0.0]
Deep-learning fully convolutional neural network is evaluated by training several times the same network on identical conditions.
Trainings performed with double floating-point precision provide slightly better estimations and a significant reduction of the variability of both the network parameters and its testing error range.
arXiv Detail & Related papers (2021-05-12T07:39:30Z) - F-FADE: Frequency Factorization for Anomaly Detection in Edge Streams [53.70940420595329]
We propose F-FADE, a new approach for detection of anomalies in edge streams.
It uses a novel frequency-factorization technique to efficiently model the time-evolving distributions of frequencies of interactions between node-pairs.
F-FADE is able to handle in an online streaming setting a broad variety of anomalies with temporal and structural changes, while requiring only constant memory.
arXiv Detail & Related papers (2020-11-09T19:55:40Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
We propose an artificial neural network with a mechanism to implicitly learn the phase spaces properties.
Our approach is either as competitive as or better than most state-of-the-art strategies.
arXiv Detail & Related papers (2020-06-19T21:04:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.