論文の概要: An Entropy-Based Model for Hierarchical Learning
- arxiv url: http://arxiv.org/abs/2212.14681v1
- Date: Fri, 30 Dec 2022 13:14:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 16:15:41.319817
- Title: An Entropy-Based Model for Hierarchical Learning
- Title(参考訳): 階層学習のためのエントロピーモデル
- Authors: Amir R. Asadi
- Abstract要約: 実世界のデータセットに共通する特徴は、データドメインがマルチスケールであることである。
本稿では,このマルチスケールデータ構造を利用した学習モデルを提案する。
階層的な学習モデルは、人間の論理的かつ進歩的な学習メカニズムにインスパイアされている。
- 参考スコア(独自算出の注目度): 3.1473798197405944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning is the dominant approach to artificial intelligence, through
which computers learn from data and experience. In the framework of supervised
learning, for a computer to learn from data accurately and efficiently, some
auxiliary information about the data distribution and target function should be
provided to it through the learning model. This notion of auxiliary information
relates to the concept of regularization in statistical learning theory. A
common feature among real-world datasets is that data domains are multiscale
and target functions are well-behaved and smooth. In this paper, we propose a
learning model that exploits this multiscale data structure and discuss its
statistical and computational benefits. The hierarchical learning model is
inspired by the logical and progressive easy-to-hard learning mechanism of
human beings and has interpretable levels. The model apportions computational
resources according to the complexity of data instances and target functions.
This property can have multiple benefits, including higher inference speed and
computational savings in training a model for many users or when training is
interrupted. We provide a statistical analysis of the learning mechanism using
multiscale entropies and show that it can yield significantly stronger
guarantees than uniform convergence bounds.
- Abstract(参考訳): 機械学習は、コンピュータがデータと経験から学ぶ人工知能に対する支配的なアプローチである。
教師付き学習の枠組みでは、コンピュータがデータから正確かつ効率的に学習するためには、学習モデルを通じてデータ分布および対象機能に関する補助情報を提供する必要がある。
この補助情報の概念は、統計学習理論における正規化の概念に関連している。
実世界のデータセットに共通する特徴は、データドメインがマルチスケールであり、ターゲット関数がうまく機能し、スムーズであることだ。
本稿では,この多スケールデータ構造を活用した学習モデルを提案し,その統計的・計算的利点について考察する。
階層的学習モデルは、人間の論理的かつ進歩的な学習メカニズムにインスパイアされ、解釈可能なレベルを持つ。
モデルは、データインスタンスとターゲット関数の複雑さに応じて計算資源を割り当てる。
この特性には、多くのユーザのためのモデルのトレーニングやトレーニングの中断時の推論速度の向上や、計算上の節約など、複数のメリットがある。
マルチスケールエントロピーを用いた学習機構の統計的解析を行い,一様収束境界よりもはるかに強い保証が得られることを示した。
関連論文リスト
- Data Augmentation for Sparse Multidimensional Learning Performance Data Using Generative AI [17.242331892899543]
学習パフォーマンスデータは、適応学習における正しい解答や問題解決の試みを記述している。
学習性能データは、適応的なアイテム選択のため、ほとんどの実世界のアプリケーションでは、非常にスパースな(80%(sim)90%の欠落)傾向にある。
本稿では,学習者のデータの分散性に対処するために,学習者のデータを拡張するための体系的フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T00:25:07Z) - Surprisal Driven $k$-NN for Robust and Interpretable Nonparametric
Learning [1.4293924404819704]
我々は情報理論の観点から、隣り合う従来のアルゴリズムに新たな光を当てた。
単一モデルを用いた分類,回帰,密度推定,異常検出などのタスクに対する頑健で解釈可能なフレームワークを提案する。
我々の研究は、分類と異常検出における最先端の成果を達成することによって、アーキテクチャの汎用性を示す。
論文 参考訳(メタデータ) (2023-11-17T00:35:38Z) - Homological Convolutional Neural Networks [4.615338063719135]
本稿では,トポロジ的に制約されたネットワーク表現を通じて,データ構造構造を利用した新しいディープラーニングアーキテクチャを提案する。
5つの古典的な機械学習モデルと3つのディープラーニングモデルに対して、18のベンチマークデータセットでモデルをテストします。
論文 参考訳(メタデータ) (2023-08-26T08:48:51Z) - Language models are weak learners [71.33837923104808]
本研究では,プロンプトベースの大規模言語モデルは弱い学習者として効果的に動作可能であることを示す。
これらのモデルをブースティングアプローチに組み込むことで、モデル内の知識を活用して、従来のツリーベースのブースティングよりも優れています。
結果は、プロンプトベースのLLMが、少数の学習者だけでなく、より大きな機械学習パイプラインのコンポーネントとして機能する可能性を示している。
論文 参考訳(メタデータ) (2023-06-25T02:39:19Z) - Towards Robust Dataset Learning [90.2590325441068]
本稿では,頑健なデータセット学習問題を定式化するための三段階最適化法を提案する。
ロバストな特徴と非ロバストな特徴を特徴付ける抽象モデルの下で,提案手法はロバストなデータセットを確実に学習する。
論文 参考訳(メタデータ) (2022-11-19T17:06:10Z) - Benchmarking Learning Efficiency in Deep Reservoir Computing [23.753943709362794]
我々は、機械学習モデルがトレーニングデータからいかに早く学習するかを測定するために、データ効率の指標とともに、ますます困難なタスクのベンチマークを導入する。
我々は、RNN、LSTM、Transformersなどの確立された逐次教師付きモデルの学習速度を、貯水池計算に基づく比較的知られていない代替モデルと比較する。
論文 参考訳(メタデータ) (2022-09-29T08:16:52Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
マルチ物理問題における機械学習ツールの効果的な利用の鍵は、それらを物理モデルとコンピュータモデルに結合することである。
本章では, 燃焼システムにおけるデータ駆動型低次モデリングの適用可能性について概説する。
論文 参考訳(メタデータ) (2022-09-05T16:48:34Z) - A Survey of Learning on Small Data: Generalization, Optimization, and
Challenge [101.27154181792567]
ビッグデータの一般化能力を近似した小さなデータについて学ぶことは、AIの究極の目的の1つである。
この調査はPACフレームワークの下でのアクティブサンプリング理論に従い、小さなデータにおける学習の一般化誤差とラベルの複雑さを分析した。
効率的な小さなデータ表現の恩恵を受けるかもしれない複数のデータアプリケーションについて調査する。
論文 参考訳(メタデータ) (2022-07-29T02:34:19Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
グラフ表現と学習を伴う新しい学習パラダイムを提案する。
本フレームワークは,1) 下位モデルとしてのバックボーンネットワーク(フィードフォワードニューラルネットなど)が,予測ラベルの入力および出力として機能を取り,2) 上位モデルとしてのグラフニューラルネットワークが,観測データから構築された特徴データグラフをメッセージパッシングすることで,新機能の埋め込みを外挿することを学ぶ。
論文 参考訳(メタデータ) (2021-10-09T09:02:45Z) - Learnability of Learning Performance and Its Application to Data
Valuation [11.78594243870616]
ほとんどの機械学習(ML)タスクでは、与えられたデータセットで学習パフォーマンスを評価するには、集中的な計算が必要である。
学習性能を効率的に推定する能力は、アクティブラーニング、データ品質管理、データバリュエーションといった幅広いアプリケーションに恩恵をもたらす可能性がある。
最近の実証研究では、多くの一般的なMLモデルに対して、少量のサンプルを用いて任意の入力データセットの学習性能を予測するパラメトリックモデルを正確に学習できることが示されている。
論文 参考訳(メタデータ) (2021-07-13T18:56:04Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。