論文の概要: A Learning-Based Optimal Uncertainty Quantification Method and Its
Application to Ballistic Impact Problems
- arxiv url: http://arxiv.org/abs/2212.14709v1
- Date: Wed, 28 Dec 2022 14:30:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 17:42:22.051330
- Title: A Learning-Based Optimal Uncertainty Quantification Method and Its
Application to Ballistic Impact Problems
- Title(参考訳): 学習に基づく最適不確実性定量法とその弾道効果問題への応用
- Authors: Xingsheng Sun, Burigede Liu
- Abstract要約: 本稿では、入力(または事前)測度が部分的に不完全であるシステムに対する最適(最大および無限)不確実性境界について述べる。
本研究では,不確実性最適化問題に対する学習基盤の枠組みを実証する。
本手法は,工学的実践における性能証明と安全性のためのマップ構築に有効であることを示す。
- 参考スコア(独自算出の注目度): 1.713291434132985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper concerns the study of optimal (supremum and infimum) uncertainty
bounds for systems where the input (or prior) probability measure is only
partially/imperfectly known (e.g., with only statistical moments and/or on a
coarse topology) rather than fully specified. Such partial knowledge provides
constraints on the input probability measures. The theory of Optimal
Uncertainty Quantification allows us to convert the task into a constraint
optimization problem where one seeks to compute the least upper/greatest lower
bound of the system's output uncertainties by finding the extremal probability
measure of the input. Such optimization requires repeated evaluation of the
system's performance indicator (input to performance map) and is
high-dimensional and non-convex by nature. Therefore, it is difficult to find
the optimal uncertainty bounds in practice. In this paper, we examine the use
of machine learning, especially deep neural networks, to address the challenge.
We achieve this by introducing a neural network classifier to approximate the
performance indicator combined with the stochastic gradient descent method to
solve the optimization problem. We demonstrate the learning based framework on
the uncertainty quantification of the impact of magnesium alloys, which are
promising light-weight structural and protective materials. Finally, we show
that the approach can be used to construct maps for the performance certificate
and safety design in engineering practice.
- Abstract(参考訳): 本稿では、入力(または前)確率測度が部分的に/不完全にしか知られていないシステム(例えば、統計モーメントと/または粗いトポロジーのみを含む)に対する最適不確実性境界の研究について、完全に特定するよりも研究する。
このような部分的知識は入力確率測度に制約を与える。
最適不確実性定量化の理論は、入力の極値確率測度を求めることによって、システムの出力の不確実性の最下限を計算しようとする制約最適化問題にタスクを変換することを可能にする。
このような最適化は、システムの性能指標(性能マップへの入力)の繰り返し評価を必要とし、本質的には高次元で非凸である。
したがって、実際に最適な不確実性境界を見つけることは困難である。
本稿では,機械学習,特にディープニューラルネットワークの課題に対する利用について検討する。
そこで我々は,確率勾配降下法と組み合わせて性能指標を近似するニューラルネットワーク分類器を導入し,最適化問題を解く。
本研究は, 軽量構造および保護材料として期待できるマグネシウム合金の影響の不確実性定量化に基づく学習枠組みを示す。
最後に,技術実践における性能証明と安全設計の地図作成にこの手法が有効であることを示す。
関連論文リスト
- Embedding generalization within the learning dynamics: An approach based-on sample path large deviation theory [0.0]
本研究では,持続的視点から手法を利用する経験的リスク摂動に基づく学習問題を考察する。
大規模偏差のFreidlin-Wentzell理論に基づく小雑音限界の推定を行う。
また、最適点推定に繋がる変分問題を解く計算アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-04T23:31:35Z) - Efficient Robust Bayesian Optimization for Arbitrary Uncertain Inputs [13.578262325229161]
本稿では,任意の入力不確実性の下で一貫して動作するロバストな最適化アルゴリズムであるAIRBOを提案する。
提案手法は,最大平均離散度(MMD)を用いてガウス過程を有効化することにより任意の分布の不確実な入力を直接モデル化し,さらにNystrom近似による後部推論を高速化する。
MMD推定誤差と合成関数および実問題に関する広範な実験により,本手法が様々な入力不確実性に対処し,最先端の性能を実現することができることを示す。
論文 参考訳(メタデータ) (2023-10-31T03:29:31Z) - Scalable Bayesian Meta-Learning through Generalized Implicit Gradients [64.21628447579772]
Inlicit Bayesian Meta-learning (iBaML) 法は、学習可能な事前のスコープを広げるだけでなく、関連する不確実性も定量化する。
解析誤差境界は、明示的よりも一般化された暗黙的勾配の精度と効率を示すために確立される。
論文 参考訳(メタデータ) (2023-03-31T02:10:30Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
本稿では,学習時の安全性維持が不可欠である高次元非線形最適化問題に対する一般的なアプローチを提案する。
LBSGDと呼ばれるアプローチは、慎重に選択されたステップサイズで対数障壁近似を適用することに基づいている。
安全強化学習における政策課題の違反を最小限に抑えるためのアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-07-21T11:14:47Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - Lower Bounds on Cross-Entropy Loss in the Presence of Test-time
Adversaries [33.53470955144013]
本論文では,テストタイムの逆数の存在下でのクロスエントロピー損失の最適下限と,それに対応する最適分類出力を決定する。
また、この下界を効率的に計算するベスポークアルゴリズムの正しさの証明を提案し、提案する。
我々は,現在のロバストなトレーニング手法の有効性を判定するための診断ツールとして下限を用い,より大きな予算での最適性とのギャップを見出した。
論文 参考訳(メタデータ) (2021-04-16T21:41:28Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
データ駆動最適化の問題を検討し、一定の点セットでクエリのみを与えられた関数を最大化する必要がある。
この問題は、関数評価が複雑で高価なプロセスである多くの領域に現れる。
我々は,提案手法を高容量ニューラルネットワークモデルに拡張可能なトラクタブル近似を提案する。
論文 参考訳(メタデータ) (2021-02-16T06:04:27Z) - The Benefit of the Doubt: Uncertainty Aware Sensing for Edge Computing
Platforms [10.86298377998459]
組込みエッジシステム上に展開されたNNにおける予測不確実性推定のための効率的なフレームワークを提案する。
フレームワークは1つのフォワードパスのみに基づいて予測の不確実性を提供するために、ゼロから構築されている。
提案手法は, 堅牢かつ正確な不確実性推定だけでなく, システム性能の点で最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2021-02-11T11:44:32Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
本研究では,不確実性推定のための拡張性のある汎用的アプローチとして,償却条件正規化最大値(ACNML)法を提案する。
提案アルゴリズムは条件付き正規化最大度(CNML)符号化方式に基づいており、最小記述長の原理に従って最小値の最適特性を持つ。
我々は、ACNMLが、分布外入力のキャリブレーションの観点から、不確実性推定のための多くの手法と好意的に比較することを示した。
論文 参考訳(メタデータ) (2020-11-05T08:04:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。