Machine Learning and Thermography Applied to the Detection and
Classification of Cracks in Building
- URL: http://arxiv.org/abs/2212.14730v1
- Date: Fri, 30 Dec 2022 14:16:24 GMT
- Title: Machine Learning and Thermography Applied to the Detection and
Classification of Cracks in Building
- Authors: Angela Busheska, Nara Almeida, Nicholas Sabella, Eudes de A. Rocha
- Abstract summary: This research project aims to combine infrared thermography and machine learning (ML) to help stakeholders determine the viability of reusing existing buildings.
In this particular phase of this research project, we've used an image classification machine learning model of Convolutional Neural Networks (DCNN) to differentiate three levels of cracks in one particular building.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Due to the environmental impacts caused by the construction industry,
repurposing existing buildings and making them more energy-efficient has become
a high-priority issue. However, a legitimate concern of land developers is
associated with the buildings' state of conservation. For that reason, infrared
thermography has been used as a powerful tool to characterize these buildings'
state of conservation by detecting pathologies, such as cracks and humidity.
Thermal cameras detect the radiation emitted by any material and translate it
into temperature-color-coded images. Abnormal temperature changes may indicate
the presence of pathologies, however, reading thermal images might not be quite
simple. This research project aims to combine infrared thermography and machine
learning (ML) to help stakeholders determine the viability of reusing existing
buildings by identifying their pathologies and defects more efficiently and
accurately. In this particular phase of this research project, we've used an
image classification machine learning model of Convolutional Neural Networks
(DCNN) to differentiate three levels of cracks in one particular building. The
model's accuracy was compared between the MSX and thermal images acquired from
two distinct thermal cameras and fused images (formed through multisource
information) to test the influence of the input data and network on the
detection results.
Related papers
- Thermal3D-GS: Physics-induced 3D Gaussians for Thermal Infrared Novel-view Synthesis [11.793425521298488]
This paper introduces a physics-induced 3D Gaussian splatting method named Thermal3D-GS.
The first large-scale benchmark dataset for this field named Thermal Infrared Novel-view Synthesis dataset (TI-NSD) is created.
The results indicate that our method outperforms the baseline method with a 3.03 dB improvement in PSNR.
arXiv Detail & Related papers (2024-09-12T13:46:53Z) - In-Situ Infrared Camera Monitoring for Defect and Anomaly Detection in Laser Powder Bed Fusion: Calibration, Data Mapping, and Feature Extraction [0.26999000177990923]
Laser powder bed fusion (LPBF) process can incur defects due to melt pool instabilities, spattering, temperature increase, and powder spread anomalies.
Identifying defects through in-situ monitoring typically requires collecting, storing, and analyzing large amounts of data generated.
arXiv Detail & Related papers (2024-07-17T16:02:22Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
This study addresses the issue of fusing infrared and visible images that appear differently for object detection.
Previous approaches discover commons underlying the two modalities and fuse upon the common space either by iterative optimization or deep networks.
This paper proposes a bilevel optimization formulation for the joint problem of fusion and detection, and then unrolls to a target-aware Dual Adversarial Learning (TarDAL) network for fusion and a commonly used detection network.
arXiv Detail & Related papers (2022-03-30T11:44:56Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z) - Maximizing Self-supervision from Thermal Image for Effective
Self-supervised Learning of Depth and Ego-motion [78.19156040783061]
Self-supervised learning of depth and ego-motion from thermal images shows strong robustness and reliability under challenging scenarios.
The inherent thermal image properties such as weak contrast, blurry edges, and noise hinder to generate effective self-supervision from thermal images.
We propose an effective thermal image mapping method that significantly increases image information, such as overall structure, contrast, and details, while preserving temporal consistency.
arXiv Detail & Related papers (2022-01-12T09:49:24Z) - Hierarchical Temperature Imaging Using Pseudo-Inversed Convolutional
Neural Network Aided TDLAS Tomography [16.39189394591311]
Convolutional Neural Networks (CNNs) have been proofed to be more robust and accurate for image reconstruction.
We propose a Pseudo-Inversed CNN (PI-CNN) for hierarchical temperature imaging.
arXiv Detail & Related papers (2021-06-05T14:14:41Z) - Exploring Thermal Images for Object Detection in Underexposure Regions
for Autonomous Driving [67.69430435482127]
Underexposure regions are vital to construct a complete perception of the surroundings for safe autonomous driving.
The availability of thermal cameras has provided an essential alternate to explore regions where other optical sensors lack in capturing interpretable signals.
This work proposes a domain adaptation framework which employs a style transfer technique for transfer learning from visible spectrum images to thermal images.
arXiv Detail & Related papers (2020-06-01T09:59:09Z) - Unsupervised Image-generation Enhanced Adaptation for Object Detection
in Thermal images [4.810743887667828]
This paper proposes an unsupervised image-generation enhanced adaptation method for object detection in thermal images.
To reduce the gap between visible domain and thermal domain, the proposed method manages to generate simulated fake thermal images.
Experiments demonstrate the effectiveness and superiority of the proposed method.
arXiv Detail & Related papers (2020-02-17T04:53:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.