In-Situ Infrared Camera Monitoring for Defect and Anomaly Detection in Laser Powder Bed Fusion: Calibration, Data Mapping, and Feature Extraction
- URL: http://arxiv.org/abs/2407.12682v1
- Date: Wed, 17 Jul 2024 16:02:22 GMT
- Title: In-Situ Infrared Camera Monitoring for Defect and Anomaly Detection in Laser Powder Bed Fusion: Calibration, Data Mapping, and Feature Extraction
- Authors: Shawn Hinnebusch, David Anderson, Berkay Bostan, Albert C. To,
- Abstract summary: Laser powder bed fusion (LPBF) process can incur defects due to melt pool instabilities, spattering, temperature increase, and powder spread anomalies.
Identifying defects through in-situ monitoring typically requires collecting, storing, and analyzing large amounts of data generated.
- Score: 0.26999000177990923
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Laser powder bed fusion (LPBF) process can incur defects due to melt pool instabilities, spattering, temperature increase, and powder spread anomalies. Identifying defects through in-situ monitoring typically requires collecting, storing, and analyzing large amounts of data generated. The first goal of this work is to propose a new approach to accurately map in-situ data to a three-dimensional (3D) geometry, aiming to reduce the amount of storage. The second goal of this work is to introduce several new IR features for defect detection or process model calibration, which include laser scan order, local preheat temperature, maximum pre-laser scanning temperature, and number of spatters generated locally and their landing locations. For completeness, processing of other common IR features, such as interpass temperature, heat intensity, cooling rates, and melt pool area, are also presented with the underlying algorithm and Python implementation. A number of different parts are printed, monitored, and characterized to provide evidence of process defects and anomalies that different IR features are capable of detecting.
Related papers
- Rotational Odometry using Ultra Low Resolution Thermal Cameras [1.3986052523534573]
This letter provides what is, to the best of our knowledge, a first study on the applicability of ultra-low-resolution thermal cameras for rotational odometry measurements.
Our use of an ultra-low-resolution thermal camera instead of other modalities such as an RGB camera is motivated by its robustness to lighting conditions.
Experiments and ablation studies are conducted for determining the impact of thermal camera resolution and the number of successive frames on the CNN estimation precision.
arXiv Detail & Related papers (2024-11-02T12:15:32Z) - Machine Learning-based Layer-wise Detection of Overheating Anomaly in LPBF using Photodiode Data [0.0]
This research focuses on the detection of overheating anomalies using photodiode sensor data.
Photodiode sensors can collect high-frequency data from the melt pool, reflecting the process dynamics and thermal history.
The proposed method offers a machine learning framework to utilize photodiode sensor data for layer-wise detection of overheating anomalies.
arXiv Detail & Related papers (2024-03-20T01:12:44Z) - TCI-Former: Thermal Conduction-Inspired Transformer for Infrared Small
Target Detection [58.00308680221481]
Infrared small target detection (ISTD) is critical to national security and has been extensively applied in military areas.
Most ISTD networks focus on designing feature extraction blocks or feature fusion modules, but rarely describe the ISTD process from the feature map evolution perspective.
We propose Thermal Conduction-Inspired Transformer (TCI-Former) based on the theoretical principles of thermal conduction.
arXiv Detail & Related papers (2024-02-03T05:51:22Z) - Towards a Robust Sensor Fusion Step for 3D Object Detection on Corrupted
Data [4.3012765978447565]
This work presents a novel fusion step that addresses data corruptions and makes sensor fusion for 3D object detection more robust.
We demonstrate that our method performs on par with state-of-the-art approaches on normal data and outperforms them on misaligned data.
arXiv Detail & Related papers (2023-06-12T18:06:29Z) - Machine Learning and Thermography Applied to the Detection and
Classification of Cracks in Building [0.0]
This research project aims to combine infrared thermography and machine learning (ML) to help stakeholders determine the viability of reusing existing buildings.
In this particular phase of this research project, we've used an image classification machine learning model of Convolutional Neural Networks (DCNN) to differentiate three levels of cracks in one particular building.
arXiv Detail & Related papers (2022-12-30T14:16:24Z) - Does Thermal Really Always Matter for RGB-T Salient Object Detection? [153.17156598262656]
This paper proposes a network named TNet to solve the RGB-T salient object detection (SOD) task.
In this paper, we introduce a global illumination estimation module to predict the global illuminance score of the image.
On the other hand, we introduce a two-stage localization and complementation module in the decoding phase to transfer object localization cue and internal integrity cue in thermal features to the RGB modality.
arXiv Detail & Related papers (2022-10-09T13:50:12Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
This study addresses the issue of fusing infrared and visible images that appear differently for object detection.
Previous approaches discover commons underlying the two modalities and fuse upon the common space either by iterative optimization or deep networks.
This paper proposes a bilevel optimization formulation for the joint problem of fusion and detection, and then unrolls to a target-aware Dual Adversarial Learning (TarDAL) network for fusion and a commonly used detection network.
arXiv Detail & Related papers (2022-03-30T11:44:56Z) - Real-time detection of uncalibrated sensors using Neural Networks [62.997667081978825]
An online machine-learning based uncalibration detector for temperature, humidity and pressure sensors was developed.
The solution integrates an Artificial Neural Network as main component which learns from the behavior of the sensors under calibrated conditions.
The obtained results show that the proposed solution is able to detect uncalibrations for deviation values of 0.25 degrees, 1% RH and 1.5 Pa, respectively.
arXiv Detail & Related papers (2021-02-02T15:44:39Z) - Towards Online Monitoring and Data-driven Control: A Study of
Segmentation Algorithms for Laser Powder Bed Fusion Processes [83.97264034062673]
An increasing number of laser powder bed fusion machines use off-axis infrared cameras to improve online monitoring and data-driven control capabilities.
We study over 30 segmentation algorithms that segment each infrared image into a foreground and background.
The identified algorithms can be readily applied to the laser powder bed fusion machines to address each of the above limitations and thus, significantly improve process control.
arXiv Detail & Related papers (2020-11-18T03:30:16Z) - Exploring Thermal Images for Object Detection in Underexposure Regions
for Autonomous Driving [67.69430435482127]
Underexposure regions are vital to construct a complete perception of the surroundings for safe autonomous driving.
The availability of thermal cameras has provided an essential alternate to explore regions where other optical sensors lack in capturing interpretable signals.
This work proposes a domain adaptation framework which employs a style transfer technique for transfer learning from visible spectrum images to thermal images.
arXiv Detail & Related papers (2020-06-01T09:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.