論文の概要: A Combined Approach Toward Consistent Reconstructions of Indoor Spaces
Based on 6D RGB-D Odometry and KinectFusion
- arxiv url: http://arxiv.org/abs/2212.14772v1
- Date: Sun, 25 Dec 2022 22:52:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-09 05:36:28.487687
- Title: A Combined Approach Toward Consistent Reconstructions of Indoor Spaces
Based on 6D RGB-D Odometry and KinectFusion
- Title(参考訳): 6次元RGB-DオドメトリーとKinectフュージョンを併用した室内空間の一貫性再構築
- Authors: Nadia Figueroa, Haiwei Dong, and Abdulmotaleb El Saddik
- Abstract要約: キーポイント抽出により連続したRGB-Dフレーム間の相対的なカメラポーズを求める6次元RGB-Dオドメトリー手法を提案する。
推定されたポーズを、フレーム間相対的なポーズを微調整するKinectFusionアルゴリズムに入力する。
提案アルゴリズムは,ポストプロセッシングのステップを使わずに,利用可能なポリゴンメッシュ(3次元仮想世界を作成するのに非常に適している)を出力する。
- 参考スコア(独自算出の注目度): 7.503338065129185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a 6D RGB-D odometry approach that finds the relative camera pose
between consecutive RGB-D frames by keypoint extraction and feature matching
both on the RGB and depth image planes. Furthermore, we feed the estimated pose
to the highly accurate KinectFusion algorithm, which uses a fast ICP (Iterative
Closest Point) to fine-tune the frame-to-frame relative pose and fuse the depth
data into a global implicit surface. We evaluate our method on a publicly
available RGB-D SLAM benchmark dataset by Sturm et al. The experimental results
show that our proposed reconstruction method solely based on visual odometry
and KinectFusion outperforms the state-of-the-art RGB-D SLAM system accuracy.
Moreover, our algorithm outputs a ready-to-use polygon mesh (highly suitable
for creating 3D virtual worlds) without any postprocessing steps.
- Abstract(参考訳): 本稿では,キーポイント抽出による連続RGB-Dフレーム間の相対カメラポーズと,RGBと奥行き画像平面上の特徴マッチングを求める6次元RGB-Dオドメトリー手法を提案する。
さらに、高速ICP(Iterative Closest Point)を用いてフレーム間相対的なポーズを微調整し、深度データをグローバルな暗黙の面に融合するKinectFusionアルゴリズムに推定されたポーズを与える。
SturmらによるRGB-D SLAMベンチマークデータセットを用いて,本手法の評価を行った。
実験結果から,視力計測とKinectFusionのみに基づく再構成手法が,最先端のRGB-D SLAMシステム精度より優れていることが示された。
さらに,本アルゴリズムは,ポストプロセッシングステップを使わずに,利用可能なポリゴンメッシュ(3次元仮想世界を作成するのに非常に適している)を出力する。
関連論文リスト
- RDPN6D: Residual-based Dense Point-wise Network for 6Dof Object Pose Estimation Based on RGB-D Images [13.051302134031808]
単一のRGB-D画像を用いてオブジェクトの6DoFポーズを計算する新しい手法を提案する。
オブジェクトのポーズを直接予測する既存の手法や、ポーズ回復のためのスパースキーポイントに依存する既存の手法とは異なり、我々のアプローチは密度の高い対応を使ってこの課題に対処する。
論文 参考訳(メタデータ) (2024-05-14T10:10:45Z) - MatchU: Matching Unseen Objects for 6D Pose Estimation from RGB-D Images [57.71600854525037]
RGB-D画像からの6次元ポーズ推定のためのFuse-Describe-Match戦略を提案する。
MatchUは、2Dテクスチャと6Dポーズ予測のための3D幾何学的手がかりを融合する汎用的なアプローチである。
論文 参考訳(メタデータ) (2024-03-03T14:01:03Z) - RGB-based Category-level Object Pose Estimation via Decoupled Metric
Scale Recovery [72.13154206106259]
本研究では、6次元のポーズとサイズ推定を分離し、不完全なスケールが剛性変換に与える影響を緩和するパイプラインを提案する。
具体的には,事前学習した単分子推定器を用いて局所的な幾何学的情報を抽出する。
別個のブランチは、カテゴリレベルの統計に基づいてオブジェクトのメートル法スケールを直接復元するように設計されている。
論文 参考訳(メタデータ) (2023-09-19T02:20:26Z) - $PC^2$: Projection-Conditioned Point Cloud Diffusion for Single-Image 3D
Reconstruction [97.06927852165464]
単一のRGB画像から物体の3次元形状を再構築することは、コンピュータビジョンにおける長年の課題である。
条件付き偏光拡散プロセスによりスパース点雲を生成する単一像3次元再構成法を提案する。
論文 参考訳(メタデータ) (2023-02-21T13:37:07Z) - Towards Two-view 6D Object Pose Estimation: A Comparative Study on
Fusion Strategy [16.65699606802237]
現在のRGBベースの6Dオブジェクトポーズ推定手法は、データセットや実世界のアプリケーションで顕著なパフォーマンスを達成した。
本稿では2枚のRGB画像から暗黙的な3D情報を学習する6次元オブジェクトポーズ推定フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-01T08:22:34Z) - Visual Odometry for RGB-D Cameras [3.655021726150368]
本稿では,静止環境を走行する移動RGB-Dカメラの高速かつ高精度な計測手法を開発した。
提案アルゴリズムは,SURF を特徴抽出器として,RANSAC を用いて結果をフィルタリングし,最小平均角を使って連続するビデオフレーム間の6つのパラメータの剛性変換を推定する。
論文 参考訳(メタデータ) (2022-03-28T21:49:12Z) - HRBF-Fusion: Accurate 3D reconstruction from RGB-D data using on-the-fly
implicits [11.83399015126983]
高忠実度3Dオブジェクトやシーンの再構成は、基本的な研究課題である。
RGB-D融合の最近の進歩は、消費者レベルのRGB-Dカメラから3Dモデルを製造する可能性を示している。
既存のアプローチは、カメラ追跡における誤差の蓄積と再構成における歪みに悩まされている。
論文 参考訳(メタデータ) (2022-02-03T20:20:32Z) - SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation [98.83762558394345]
SO-Poseは、オブジェクトの6自由度(6DoF)をすべて、単一のRGBイメージから散らばった環境でポーズさせるフレームワークである。
本稿では,3次元オブジェクトの2層表現を確立するために,自己閉塞に関する新たな推論を導入する。
対応性,自己閉塞性,6次元ポーズを整列する層間合成により,精度とロバスト性をさらに向上させることができる。
論文 参考訳(メタデータ) (2021-08-18T19:49:29Z) - Refer-it-in-RGBD: A Bottom-up Approach for 3D Visual Grounding in RGBD
Images [69.5662419067878]
RGBD画像における接地参照表現は新たな分野である。
本稿では,参照する物体が閉塞により部分的にスキャンされる場合が多い単視点rgbd画像における3次元視覚グランド化の新たな課題を提案する。
提案手法はまず,RGBD画像内の関連領域をローカライズするヒートマップを生成するために,下層の言語と視覚的特徴を融合させる。
次に、ヒートマップに基づく適応的特徴学習を行い、他のビジオ言語融合とオブジェクトレベルのマッチングを行い、最後に参照したオブジェクトを接地する。
論文 参考訳(メタデータ) (2021-03-14T11:18:50Z) - Geometric Correspondence Fields: Learned Differentiable Rendering for 3D
Pose Refinement in the Wild [96.09941542587865]
野生の任意のカテゴリのオブジェクトに対する微分可能レンダリングに基づく新しい3次元ポーズ精細化手法を提案する。
このようにして、3DモデルとRGB画像のオブジェクトを正確に整列し、3Dポーズ推定を大幅に改善する。
我々は、Pix3Dデータセットの挑戦に対するアプローチを評価し、複数のメトリクスにおける最先端の精錬手法と比較して、最大55%の改善を実現した。
論文 参考訳(メタデータ) (2020-07-17T12:34:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。