A Combined Approach Toward Consistent Reconstructions of Indoor Spaces
Based on 6D RGB-D Odometry and KinectFusion
- URL: http://arxiv.org/abs/2212.14772v1
- Date: Sun, 25 Dec 2022 22:52:25 GMT
- Title: A Combined Approach Toward Consistent Reconstructions of Indoor Spaces
Based on 6D RGB-D Odometry and KinectFusion
- Authors: Nadia Figueroa, Haiwei Dong, and Abdulmotaleb El Saddik
- Abstract summary: We propose a 6D RGB-D odometry approach that finds the relative camera pose between consecutive RGB-D frames by keypoint extraction.
We feed the estimated pose to the highly accurate KinectFusion algorithm, which fine-tune the frame-to-frame relative pose.
Our algorithm outputs a ready-to-use polygon mesh (highly suitable for creating 3D virtual worlds) without any postprocessing steps.
- Score: 7.503338065129185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a 6D RGB-D odometry approach that finds the relative camera pose
between consecutive RGB-D frames by keypoint extraction and feature matching
both on the RGB and depth image planes. Furthermore, we feed the estimated pose
to the highly accurate KinectFusion algorithm, which uses a fast ICP (Iterative
Closest Point) to fine-tune the frame-to-frame relative pose and fuse the depth
data into a global implicit surface. We evaluate our method on a publicly
available RGB-D SLAM benchmark dataset by Sturm et al. The experimental results
show that our proposed reconstruction method solely based on visual odometry
and KinectFusion outperforms the state-of-the-art RGB-D SLAM system accuracy.
Moreover, our algorithm outputs a ready-to-use polygon mesh (highly suitable
for creating 3D virtual worlds) without any postprocessing steps.
Related papers
- RDPN6D: Residual-based Dense Point-wise Network for 6Dof Object Pose Estimation Based on RGB-D Images [13.051302134031808]
We introduce a novel method for calculating the 6DoF pose of an object using a single RGB-D image.
Unlike existing methods that either directly predict objects' poses or rely on sparse keypoints for pose recovery, our approach addresses this challenging task using dense correspondence.
arXiv Detail & Related papers (2024-05-14T10:10:45Z) - MatchU: Matching Unseen Objects for 6D Pose Estimation from RGB-D Images [57.71600854525037]
We propose a Fuse-Describe-Match strategy for 6D pose estimation from RGB-D images.
MatchU is a generic approach that fuses 2D texture and 3D geometric cues for 6D pose prediction of unseen objects.
arXiv Detail & Related papers (2024-03-03T14:01:03Z) - RGB-based Category-level Object Pose Estimation via Decoupled Metric
Scale Recovery [72.13154206106259]
We propose a novel pipeline that decouples the 6D pose and size estimation to mitigate the influence of imperfect scales on rigid transformations.
Specifically, we leverage a pre-trained monocular estimator to extract local geometric information.
A separate branch is designed to directly recover the metric scale of the object based on category-level statistics.
arXiv Detail & Related papers (2023-09-19T02:20:26Z) - $PC^2$: Projection-Conditioned Point Cloud Diffusion for Single-Image 3D
Reconstruction [97.06927852165464]
Reconstructing the 3D shape of an object from a single RGB image is a long-standing and highly challenging problem in computer vision.
We propose a novel method for single-image 3D reconstruction which generates a sparse point cloud via a conditional denoising diffusion process.
arXiv Detail & Related papers (2023-02-21T13:37:07Z) - Towards Two-view 6D Object Pose Estimation: A Comparative Study on
Fusion Strategy [16.65699606802237]
Current RGB-based 6D object pose estimation methods have achieved noticeable performance on datasets and real world applications.
This paper proposes a framework for 6D object pose estimation that learns implicit 3D information from 2 RGB images.
arXiv Detail & Related papers (2022-07-01T08:22:34Z) - Visual Odometry for RGB-D Cameras [3.655021726150368]
This paper develops a quick and accurate approach to visual odometry of a moving RGB-D camera navigating on a static environment.
The proposed algorithm uses SURF as feature extractor, RANSAC to filter the results and Minimum Mean Square to estimate the rigid transformation of six parameters between successive video frames.
arXiv Detail & Related papers (2022-03-28T21:49:12Z) - HRBF-Fusion: Accurate 3D reconstruction from RGB-D data using on-the-fly
implicits [11.83399015126983]
Reconstruction of high-fidelity 3D objects or scenes is a fundamental research problem.
Recent advances in RGB-D fusion have demonstrated the potential of producing 3D models from consumer-level RGB-D cameras.
Existing approaches suffer from the accumulation of errors in camera tracking and distortion in the reconstruction.
arXiv Detail & Related papers (2022-02-03T20:20:32Z) - SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation [98.83762558394345]
SO-Pose is a framework for regressing all 6 degrees-of-freedom (6DoF) for the object pose in a cluttered environment from a single RGB image.
We introduce a novel reasoning about self-occlusion, in order to establish a two-layer representation for 3D objects.
Cross-layer consistencies that align correspondences, self-occlusion and 6D pose, we can further improve accuracy and robustness.
arXiv Detail & Related papers (2021-08-18T19:49:29Z) - Refer-it-in-RGBD: A Bottom-up Approach for 3D Visual Grounding in RGBD
Images [69.5662419067878]
Grounding referring expressions in RGBD image has been an emerging field.
We present a novel task of 3D visual grounding in single-view RGBD image where the referred objects are often only partially scanned due to occlusion.
Our approach first fuses the language and the visual features at the bottom level to generate a heatmap that localizes the relevant regions in the RGBD image.
Then our approach conducts an adaptive feature learning based on the heatmap and performs the object-level matching with another visio-linguistic fusion to finally ground the referred object.
arXiv Detail & Related papers (2021-03-14T11:18:50Z) - Geometric Correspondence Fields: Learned Differentiable Rendering for 3D
Pose Refinement in the Wild [96.09941542587865]
We present a novel 3D pose refinement approach based on differentiable rendering for objects of arbitrary categories in the wild.
In this way, we precisely align 3D models to objects in RGB images which results in significantly improved 3D pose estimates.
We evaluate our approach on the challenging Pix3D dataset and achieve up to 55% relative improvement compared to state-of-the-art refinement methods in multiple metrics.
arXiv Detail & Related papers (2020-07-17T12:34:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.