RDPN6D: Residual-based Dense Point-wise Network for 6Dof Object Pose Estimation Based on RGB-D Images
- URL: http://arxiv.org/abs/2405.08483v1
- Date: Tue, 14 May 2024 10:10:45 GMT
- Title: RDPN6D: Residual-based Dense Point-wise Network for 6Dof Object Pose Estimation Based on RGB-D Images
- Authors: Zong-Wei Hong, Yen-Yang Hung, Chu-Song Chen,
- Abstract summary: We introduce a novel method for calculating the 6DoF pose of an object using a single RGB-D image.
Unlike existing methods that either directly predict objects' poses or rely on sparse keypoints for pose recovery, our approach addresses this challenging task using dense correspondence.
- Score: 13.051302134031808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we introduce a novel method for calculating the 6DoF pose of an object using a single RGB-D image. Unlike existing methods that either directly predict objects' poses or rely on sparse keypoints for pose recovery, our approach addresses this challenging task using dense correspondence, i.e., we regress the object coordinates for each visible pixel. Our method leverages existing object detection methods. We incorporate a re-projection mechanism to adjust the camera's intrinsic matrix to accommodate cropping in RGB-D images. Moreover, we transform the 3D object coordinates into a residual representation, which can effectively reduce the output space and yield superior performance. We conducted extensive experiments to validate the efficacy of our approach for 6D pose estimation. Our approach outperforms most previous methods, especially in occlusion scenarios, and demonstrates notable improvements over the state-of-the-art methods. Our code is available on https://github.com/AI-Application-and-Integration-Lab/RDPN6D.
Related papers
- RGB-based Category-level Object Pose Estimation via Decoupled Metric
Scale Recovery [72.13154206106259]
We propose a novel pipeline that decouples the 6D pose and size estimation to mitigate the influence of imperfect scales on rigid transformations.
Specifically, we leverage a pre-trained monocular estimator to extract local geometric information.
A separate branch is designed to directly recover the metric scale of the object based on category-level statistics.
arXiv Detail & Related papers (2023-09-19T02:20:26Z) - $PC^2$: Projection-Conditioned Point Cloud Diffusion for Single-Image 3D
Reconstruction [97.06927852165464]
Reconstructing the 3D shape of an object from a single RGB image is a long-standing and highly challenging problem in computer vision.
We propose a novel method for single-image 3D reconstruction which generates a sparse point cloud via a conditional denoising diffusion process.
arXiv Detail & Related papers (2023-02-21T13:37:07Z) - Towards Two-view 6D Object Pose Estimation: A Comparative Study on
Fusion Strategy [16.65699606802237]
Current RGB-based 6D object pose estimation methods have achieved noticeable performance on datasets and real world applications.
This paper proposes a framework for 6D object pose estimation that learns implicit 3D information from 2 RGB images.
arXiv Detail & Related papers (2022-07-01T08:22:34Z) - Unseen Object 6D Pose Estimation: A Benchmark and Baselines [62.8809734237213]
We propose a new task that enables and facilitates algorithms to estimate the 6D pose estimation of novel objects during testing.
We collect a dataset with both real and synthetic images and up to 48 unseen objects in the test set.
By training an end-to-end 3D correspondences network, our method finds corresponding points between an unseen object and a partial view RGBD image accurately and efficiently.
arXiv Detail & Related papers (2022-06-23T16:29:53Z) - Coupled Iterative Refinement for 6D Multi-Object Pose Estimation [64.7198752089041]
Given a set of known 3D objects and an RGB or RGB-D input image, we detect and estimate the 6D pose of each object.
Our approach iteratively refines both pose and correspondence in a tightly coupled manner, allowing us to dynamically remove outliers to improve accuracy.
arXiv Detail & Related papers (2022-04-26T18:00:08Z) - Pose Estimation of Specific Rigid Objects [0.7931904787652707]
We address the problem of estimating the 6D pose of rigid objects from a single RGB or RGB-D input image.
This problem is of great importance to many application fields such as robotic manipulation, augmented reality, and autonomous driving.
arXiv Detail & Related papers (2021-12-30T14:36:47Z) - SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation [98.83762558394345]
SO-Pose is a framework for regressing all 6 degrees-of-freedom (6DoF) for the object pose in a cluttered environment from a single RGB image.
We introduce a novel reasoning about self-occlusion, in order to establish a two-layer representation for 3D objects.
Cross-layer consistencies that align correspondences, self-occlusion and 6D pose, we can further improve accuracy and robustness.
arXiv Detail & Related papers (2021-08-18T19:49:29Z) - Spatial Attention Improves Iterative 6D Object Pose Estimation [52.365075652976735]
We propose a new method for 6D pose estimation refinement from RGB images.
Our main insight is that after the initial pose estimate, it is important to pay attention to distinct spatial features of the object.
We experimentally show that this approach learns to attend to salient spatial features and learns to ignore occluded parts of the object, leading to better pose estimation across datasets.
arXiv Detail & Related papers (2021-01-05T17:18:52Z) - PrimA6D: Rotational Primitive Reconstruction for Enhanced and Robust 6D
Pose Estimation [11.873744190924599]
We introduce a rotational primitive prediction based 6D object pose estimation using a single image as an input.
We leverage a Variational AutoEncoder (VAE) to learn this underlying primitive and its associated keypoints.
When evaluated over public datasets, our method yields a notable improvement over LINEMOD, Occlusion LINEMOD, and the Y-induced dataset.
arXiv Detail & Related papers (2020-06-14T03:55:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.