Nuisance Function Tuning and Sample Splitting for Optimal Doubly Robust Estimation
- URL: http://arxiv.org/abs/2212.14857v3
- Date: Tue, 13 Aug 2024 00:24:01 GMT
- Title: Nuisance Function Tuning and Sample Splitting for Optimal Doubly Robust Estimation
- Authors: Sean McGrath, Rajarshi Mukherjee,
- Abstract summary: We consider the problem of how to estimate nuisance functions to obtain optimal rates of convergence for a doubly robust nonparametric functional.
We show that plug-in and first-order biased-corrected estimators can achieve minimax rates of convergence across all H"older smoothness classes of the nuisance functions.
- Score: 5.018363990542611
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimators of doubly robust functionals typically rely on estimating two complex nuisance functions, such as the propensity score and conditional outcome mean for the average treatment effect functional. We consider the problem of how to estimate nuisance functions to obtain optimal rates of convergence for a doubly robust nonparametric functional that has witnessed applications across the causal inference and conditional independence testing literature. For several plug-in estimators and a first-order bias-corrected estimator, we illustrate the interplay between different tuning parameter choices for the nuisance function estimators and sample splitting strategies on the optimal rate of estimating the functional of interest. For each of these estimators and each sample splitting strategy, we show the necessity to either undersmooth or oversmooth the nuisance function estimators under low regularity conditions to obtain optimal rates of convergence for the functional of interest. Unlike the existing literature, we show that plug-in and first-order biased-corrected estimators can achieve minimax rates of convergence across all H\"older smoothness classes of the nuisance functions by careful combinations of sample splitting and nuisance function tuning strategies.
Related papers
- Two-Stage Nuisance Function Estimation for Causal Mediation Analysis [8.288031125057524]
We propose a two-stage estimation strategy that estimates the nuisance functions based on the role they play in the structure of the bias of the influence function-based estimator of the mediation functional.
We provide analysis of the proposed method, as well as sufficient conditions for consistency and normality of the estimator of the parameter of interest.
arXiv Detail & Related papers (2024-03-31T16:38:48Z) - Statistical Inference of Optimal Allocations I: Regularities and their Implications [3.904240476752459]
We first derive Hadamard differentiability of the value function through a detailed analysis of the general properties of the sorting operator.
Building on our Hadamard differentiability results, we demonstrate how the functional delta method can be used to directly derive the properties of the value function process.
arXiv Detail & Related papers (2024-03-27T04:39:13Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
We study optimal procedures for estimating a linear functional based on observational data.
For any convex and symmetric function class $mathcalF$, we derive a non-asymptotic local minimax bound on the mean-squared error.
arXiv Detail & Related papers (2023-01-16T02:57:37Z) - Statistical Optimality of Divide and Conquer Kernel-based Functional
Linear Regression [1.7227952883644062]
This paper studies the convergence performance of divide-and-conquer estimators in the scenario that the target function does not reside in the underlying kernel space.
As a decomposition-based scalable approach, the divide-and-conquer estimators of functional linear regression can substantially reduce the algorithmic complexities in time and memory.
arXiv Detail & Related papers (2022-11-20T12:29:06Z) - Off-policy estimation of linear functionals: Non-asymptotic theory for
semi-parametric efficiency [59.48096489854697]
The problem of estimating a linear functional based on observational data is canonical in both the causal inference and bandit literatures.
We prove non-asymptotic upper bounds on the mean-squared error of such procedures.
We establish its instance-dependent optimality in finite samples via matching non-asymptotic local minimax lower bounds.
arXiv Detail & Related papers (2022-09-26T23:50:55Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
We study a constructive algorithm that approximates Gateaux derivatives for statistical functionals by finite differencing.
We study the case where probability distributions are not known a priori but need to be estimated from data.
arXiv Detail & Related papers (2022-08-29T16:16:22Z) - Inference on Strongly Identified Functionals of Weakly Identified
Functions [71.42652863687117]
We study a novel condition for the functional to be strongly identified even when the nuisance function is not.
We propose penalized minimax estimators for both the primary and debiasing nuisance functions.
arXiv Detail & Related papers (2022-08-17T13:38:31Z) - Minimax Kernel Machine Learning for a Class of Doubly Robust Functionals [16.768606469968113]
We consider a class of doubly robust moment functions originally introduced in (Robins et al., 2008)
We demonstrate that this moment function can be used to construct estimating equations for the nuisance functions.
The convergence rates of the nuisance functions are analyzed using the modern techniques in statistical learning theory.
arXiv Detail & Related papers (2021-04-07T05:52:15Z) - Causal Inference Under Unmeasured Confounding With Negative Controls: A
Minimax Learning Approach [84.29777236590674]
We study the estimation of causal parameters when not all confounders are observed and instead negative controls are available.
Recent work has shown how these can enable identification and efficient estimation via two so-called bridge functions.
arXiv Detail & Related papers (2021-03-25T17:59:19Z) - Equivalence of Convergence Rates of Posterior Distributions and Bayes
Estimators for Functions and Nonparametric Functionals [4.375582647111708]
We study the posterior contraction rates of a Bayesian method with Gaussian process priors in nonparametric regression.
For a general class of kernels, we establish convergence rates of the posterior measure of the regression function and its derivatives.
Our proof shows that, under certain conditions, to any convergence rate of Bayes estimators there corresponds the same convergence rate of the posterior distributions.
arXiv Detail & Related papers (2020-11-27T19:11:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.