論文の概要: Morphology-based non-rigid registration of coronary computed tomography
and intravascular images through virtual catheter path optimization
- arxiv url: http://arxiv.org/abs/2301.00060v1
- Date: Fri, 30 Dec 2022 21:48:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-03 15:03:59.408327
- Title: Morphology-based non-rigid registration of coronary computed tomography
and intravascular images through virtual catheter path optimization
- Title(参考訳): 仮想カテーテルパス最適化による冠動脈CTおよび血管内画像の形態学的非剛性登録
- Authors: Karim Kadry, Abhishek Karmakar, Andreas Schuh, Kersten Peterson,
Michiel Schaap, David Marlevi, Charles Taylor, Elazer Edelman, and Farhad
Nezami
- Abstract要約: 血管内画像とCCTA画像の厳密なマッチングと非厳密なマッチングのための半自動セグメンテーションに基づくフレームワークを提案する。
以上の結果から,我々の非剛性登録は,光分岐アライメントにおける他の共存手法よりも優れていたことが示唆された。
- 参考スコア(独自算出の注目度): 0.5525871666098097
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coronary Computed Tomography Angiography (CCTA) provides information on the
presence, extent, and severity of obstructive coronary artery disease.
Large-scale clinical studies analyzing CCTA-derived metrics typically require
ground-truth validation in the form of high-fidelity 3D intravascular imaging.
However, manual rigid alignment of intravascular images to corresponding CCTA
images is both time consuming and user-dependent. Moreover, intravascular
modalities suffer from several non-rigid motion-induced distortions arising
from distortions in the imaging catheter path. To address these issues, we here
present a semi-automatic segmentation-based framework for both rigid and
non-rigid matching of intravascular images to CCTA images. We formulate the
problem in terms of finding the optimal \emph{virtual catheter path} that
samples the CCTA data to recapitulate the coronary artery morphology found in
the intravascular image. We validate our co-registration framework on a cohort
of $n=40$ patients using bifurcation landmarks as ground truth for longitudinal
and rotational registration. Our results indicate that our non-rigid
registration significantly outperforms other co-registration approaches for
luminal bifurcation alignment in both longitudinal (mean mismatch: 3.3 frames)
and rotational directions (mean mismatch: 28.6 degrees). By providing a
differentiable framework for automatic multi-modal intravascular data fusion,
our developed co-registration modules significantly reduces the manual effort
required to conduct large-scale multi-modal clinical studies while also
providing a solid foundation for the development of machine learning-based
co-registration approaches.
- Abstract(参考訳): 冠動脈造影(CCTA)は閉塞性冠動脈疾患の存在,範囲,重症度に関する情報を提供する。
ccta由来の指標を分析した大規模臨床研究は、通常、高忠実度3d血管内イメージングの形で地上検証を必要とする。
しかし,手動による血管内画像とCCTA画像との整合性は,時間とユーザに依存している。
さらに、血管内モダリティは、画像カテーテル経路の歪みに起因するいくつかの非剛性運動誘発歪みに悩まされる。
そこで本研究では, 血管内画像とccta画像との剛体および非剛体マッチングのための半自動セグメンテーションに基づく枠組みを提案する。
血管内画像の冠状動脈形態を再現するために,CCTAデータをサンプリングする最適な \emph{virtual catheter path} の発見という観点から,この問題を定式化する。
縦型および回転型登録のための基礎的真理として,分岐ランドマークを用いた患者40ドルのコホートを用いて,共同登録枠組みを検証する。
以上の結果から, 縦方向(平均3.3フレーム)と回転方向(平均28.6度)では, 光分岐アライメントの他の共登録法を有意に上回った。
自動マルチモーダル血管内データ融合のための差別化可能なフレームワークを提供することにより,大規模マルチモーダル臨床研究に必要な手作業を大幅に削減するとともに,機械学習によるコレジゲーション手法の開発のための確かな基盤を提供する。
関連論文リスト
- Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
クロスモーダル逆ニューラルレンダリングによる神経外科手術における術中3D/2Dレジストレーションのための新しいアプローチを提案する。
本手法では,暗黙の神経表現を2つの構成要素に分離し,術前および術中における解剖学的構造について検討した。
臨床症例の振り返りデータを用いて本法の有効性を検証し,現在の登録基準を満たした状態での最先端の検査成績を示した。
論文 参考訳(メタデータ) (2024-09-18T13:40:59Z) - AGFA-Net: Attention-Guided and Feature-Aggregated Network for Coronary Artery Segmentation using Computed Tomography Angiography [5.583495103569884]
CCTA画像を用いた冠動脈セグメンテーションのための注意誘導型3Dディープネットワーク(AGFA-Net)を提案する。
AGFA-Netは注意機構と機能改善モジュールを活用して、有能な特徴を捉え、セグメンテーションの精度を高める。
1000個のCCTAスキャンからなるデータセットの評価はAGFA-Netの優れた性能を示し、平均Dice係数は86.74%、ハウスドルフ距離は0.23mmである。
論文 参考訳(メタデータ) (2024-06-13T01:04:47Z) - Spatiotemporal Disentanglement of Arteriovenous Malformations in Digital
Subtraction Angiography [37.44819725897024]
本提案手法は, 船舶の自動分類による臨界情報を強調することにより, デジタルサブトラクション血管造影(DSA)画像シリーズを向上することを目的としている。
本法は, 臨床用DSA画像シリーズを用いて検討し, 動脈と静脈の効率的な鑑別を実証した。
論文 参考訳(メタデータ) (2024-02-15T00:29:53Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
血管セグメンテーションは、冠動脈狭窄、網膜血管疾患、脳動脈瘤などの多くの医学的応用において重要である。
コントラストに敏感なマルチスケールアフィニティアプローチを用いて,幾何学的手法と画素単位のセグメンテーション特徴を連成的にモデル化する新しいアプローチであるAFNを提案する。
論文 参考訳(メタデータ) (2022-11-12T05:39:17Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - A Deep Discontinuity-Preserving Image Registration Network [73.03885837923599]
ほとんどの深層学習に基づく登録法は、所望の変形場が全世界的に滑らかで連続的であると仮定する。
本稿では、より優れた登録性能とリアルな変形場を得るために、弱い教師付き深部不連続保存画像登録ネットワーク(DDIR)を提案する。
本研究では, 心臓磁気共鳴(MR)画像の登録実験において, 登録精度を大幅に向上し, より現実的な変形を予測できることを実証した。
論文 参考訳(メタデータ) (2021-07-09T13:35:59Z) - Segmentation of Anatomical Layers and Artifacts in Intravascular
Polarization Sensitive Optical Coherence Tomography Using Attending Physician
and Boundary Cardinality Lost Terms [4.93836246080317]
血管内超音波と光コヒーレンス断層撮影は冠状動脈を特徴付けるために広く利用可能である。
畳み込みニューラルネットワークモデルを提案し,その性能を多項損失関数を用いて最適化する。
モデルは2つの主要なアーティファクトのクラスをセグメンテーションし,血管壁領域内の解剖学的層を検出する。
論文 参考訳(メタデータ) (2021-05-11T15:52:31Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
臨床皮膚画像から機械学習に基づく悪性度予測と病変の同定を検討する。
まず, サブタイプや悪性度に関わらず画像に存在するすべての病変を同定し, その悪性度を推定し, 凝集により, 画像レベルの悪性度も生成する。
論文 参考訳(メタデータ) (2021-04-02T20:52:05Z) - Patch-based field-of-view matching in multi-modal images for
electroporation-based ablations [0.6285581681015912]
マルチモーダルイメージングセンサーは、現在、介入治療作業フローの異なるステップに関与している。
この情報を統合するには、取得した画像間の観測された解剖の正確な空間的アライメントに依存する。
本稿では, ボクセルパッチを用いた地域登録手法が, ボクセルワイドアプローチと「グローバルシフト」アプローチとの間に優れた構造的妥協をもたらすことを示す。
論文 参考訳(メタデータ) (2020-11-09T11:27:45Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
網膜血管と主要動脈を2次元基底画像と3次元CTアンギオグラフィー(CTA)スキャンで分割する,PC-Netと呼ばれる新しいディープラーニングモデルを提案する。
PC-Netでは、ピラミッド圧縮励起(PSE)モジュールが各畳み込みブロックに空間情報を導入し、より効果的なマルチスケール特徴を抽出する能力を高めている。
論文 参考訳(メタデータ) (2020-10-09T08:22:54Z) - Coronary Wall Segmentation in CCTA Scans via a Hybrid Net with Contours
Regularization [35.428157385902644]
冠状動脈の新しい境界検出法を提案する。
提案手法は, 最先端の精度に優れるスムーズな閉境界を生成することができる。
論文 参考訳(メタデータ) (2020-02-27T17:06:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。