Smooth Mathematical Function from Compact Neural Networks
- URL: http://arxiv.org/abs/2301.00181v1
- Date: Sat, 31 Dec 2022 11:33:24 GMT
- Title: Smooth Mathematical Function from Compact Neural Networks
- Authors: I.K. Hong
- Abstract summary: We get NNs that generate highly accurate and highly smooth function, which only comprised of a few weight parameters.
New activation function, meta-batch method, features of numerical data, meta-augmentation with meta parameters are presented.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This is paper for the smooth function approximation by neural networks (NN).
Mathematical or physical functions can be replaced by NN models through
regression. In this study, we get NNs that generate highly accurate and highly
smooth function, which only comprised of a few weight parameters, through
discussing a few topics about regression. First, we reinterpret inside of NNs
for regression; consequently, we propose a new activation function--integrated
sigmoid linear unit (ISLU). Then special charateristics of metadata for
regression, which is different from other data like image or sound, is
discussed for improving the performance of neural networks. Finally, the one of
a simple hierarchical NN that generate models substituting mathematical
function is presented, and the new batch concept ``meta-batch" which improves
the performance of NN several times more is introduced.
The new activation function, meta-batch method, features of numerical data,
meta-augmentation with metaparameters, and a structure of NN generating a
compact multi-layer perceptron(MLP) are essential in this study.
Related papers
- An Efficient Approach to Regression Problems with Tensor Neural Networks [5.345144592056051]
This paper introduces a tensor neural network (TNN) to address nonparametric regression problems.
The TNN demonstrates superior performance compared to conventional Feed-Forward Networks (FFN) and Radial Basis Function Networks (RBN)
A significant innovation in our approach is the integration of statistical regression and numerical integration within the TNN framework.
arXiv Detail & Related papers (2024-06-14T03:38:40Z) - Gaussian Process Neural Additive Models [3.7969209746164325]
We propose a new subclass of Neural Additive Models (NAMs) that use a single-layer neural network construction of the Gaussian process via random Fourier features.
GP-NAMs have the advantage of a convex objective function and number of trainable parameters that grows linearly with feature dimensionality.
We show that GP-NAM achieves comparable or better performance in both classification and regression tasks with a large reduction in the number of parameters.
arXiv Detail & Related papers (2024-02-19T20:29:34Z) - Neural Functional Transformers [99.98750156515437]
This paper uses the attention mechanism to define a novel set of permutation equivariant weight-space layers called neural functional Transformers (NFTs)
NFTs respect weight-space permutation symmetries while incorporating the advantages of attention, which have exhibited remarkable success across multiple domains.
We also leverage NFTs to develop Inr2Array, a novel method for computing permutation invariant representations from the weights of implicit neural representations (INRs)
arXiv Detail & Related papers (2023-05-22T23:38:27Z) - How (Implicit) Regularization of ReLU Neural Networks Characterizes the
Learned Function -- Part II: the Multi-D Case of Two Layers with Random First
Layer [2.1485350418225244]
We give an exact macroscopic characterization of the generalization behavior of randomized, shallow NNs with ReLU activation.
We show that RSNs correspond to a generalized additive model (GAM)-typed regression in which infinitely many directions are considered.
arXiv Detail & Related papers (2023-03-20T21:05:47Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
This work studies the design of neural networks that can process the weights or gradients of other neural networks.
We focus on the permutation symmetries that arise in the weights of deep feedforward networks because hidden layer neurons have no inherent order.
In our experiments, we find that permutation equivariant neural functionals are effective on a diverse set of tasks.
arXiv Detail & Related papers (2023-02-27T18:52:38Z) - Graph-adaptive Rectified Linear Unit for Graph Neural Networks [64.92221119723048]
Graph Neural Networks (GNNs) have achieved remarkable success by extending traditional convolution to learning on non-Euclidean data.
We propose Graph-adaptive Rectified Linear Unit (GReLU) which is a new parametric activation function incorporating the neighborhood information in a novel and efficient way.
We conduct comprehensive experiments to show that our plug-and-play GReLU method is efficient and effective given different GNN backbones and various downstream tasks.
arXiv Detail & Related papers (2022-02-13T10:54:59Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
We propose the linear approximation neural network (LANN) to approximate a given deep model with curve activation function.
We experimentally explore the training process of neural networks and detect overfitting.
We find that the $L1$ and $L2$ regularizations suppress the increase of model complexity.
arXiv Detail & Related papers (2020-06-16T07:38:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.