Graph-adaptive Rectified Linear Unit for Graph Neural Networks
- URL: http://arxiv.org/abs/2202.06281v1
- Date: Sun, 13 Feb 2022 10:54:59 GMT
- Title: Graph-adaptive Rectified Linear Unit for Graph Neural Networks
- Authors: Yifei Zhang, Hao Zhu, Ziqiao Meng, Piotr Koniusz, Irwin King
- Abstract summary: Graph Neural Networks (GNNs) have achieved remarkable success by extending traditional convolution to learning on non-Euclidean data.
We propose Graph-adaptive Rectified Linear Unit (GReLU) which is a new parametric activation function incorporating the neighborhood information in a novel and efficient way.
We conduct comprehensive experiments to show that our plug-and-play GReLU method is efficient and effective given different GNN backbones and various downstream tasks.
- Score: 64.92221119723048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have achieved remarkable success by extending
traditional convolution to learning on non-Euclidean data. The key to the GNNs
is adopting the neural message-passing paradigm with two stages: aggregation
and update. The current design of GNNs considers the topology information in
the aggregation stage. However, in the updating stage, all nodes share the same
updating function. The identical updating function treats each node embedding
as i.i.d. random variables and thus ignores the implicit relationships between
neighborhoods, which limits the capacity of the GNNs. The updating function is
usually implemented with a linear transformation followed by a non-linear
activation function. To make the updating function topology-aware, we inject
the topological information into the non-linear activation function and propose
Graph-adaptive Rectified Linear Unit (GReLU), which is a new parametric
activation function incorporating the neighborhood information in a novel and
efficient way. The parameters of GReLU are obtained from a hyperfunction based
on both node features and the corresponding adjacent matrix. To reduce the risk
of overfitting and the computational cost, we decompose the hyperfunction as
two independent components for nodes and features respectively. We conduct
comprehensive experiments to show that our plug-and-play GReLU method is
efficient and effective given different GNN backbones and various downstream
tasks.
Related papers
- Scalable Graph Compressed Convolutions [68.85227170390864]
We propose a differentiable method that applies permutations to calibrate input graphs for Euclidean convolution.
Based on the graph calibration, we propose the Compressed Convolution Network (CoCN) for hierarchical graph representation learning.
arXiv Detail & Related papers (2024-07-26T03:14:13Z) - Conditional Local Feature Encoding for Graph Neural Networks [14.983942698240293]
Graph neural networks (GNNs) have shown great success in learning from graph-based data.
The key mechanism of current GNNs is message passing, where a node's feature is updated based on the information passing from its local neighbourhood.
We propose conditional local feature encoding (CLFE) to help prevent the problem of node features being dominated by information from local neighbourhood.
arXiv Detail & Related papers (2024-05-08T01:51:19Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Graph Ordering Attention Networks [22.468776559433614]
Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data.
We introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood.
GOAT layer demonstrates its increased performance in modeling graph metrics that capture complex information.
arXiv Detail & Related papers (2022-04-11T18:13:19Z) - Pyramidal Reservoir Graph Neural Network [18.632681846787246]
We propose a deep Graph Neural Network (GNN) model that alternates two types of layers.
We show how graph pooling can reduce the computational complexity of the model.
Our proposed approach to the design of RC-based GNNs offers an advantageous and principled trade-off between accuracy and complexity.
arXiv Detail & Related papers (2021-04-10T08:34:09Z) - Learning Graph Neural Networks with Approximate Gradient Descent [24.49427608361397]
Two types of graph neural networks (GNNs) are investigated, depending on whether labels are attached to nodes or graphs.
A comprehensive framework for designing and analyzing convergence of GNN training algorithms is developed.
The proposed algorithm guarantees a linear convergence rate to the underlying true parameters of GNNs.
arXiv Detail & Related papers (2020-12-07T02:54:48Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Permutation-equivariant and Proximity-aware Graph Neural Networks with
Stochastic Message Passing [88.30867628592112]
Graph neural networks (GNNs) are emerging machine learning models on graphs.
Permutation-equivariance and proximity-awareness are two important properties highly desirable for GNNs.
We show that existing GNNs, mostly based on the message-passing mechanism, cannot simultaneously preserve the two properties.
In order to preserve node proximities, we augment the existing GNNs with node representations.
arXiv Detail & Related papers (2020-09-05T16:46:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.