Robust Domain Adaptive Object Detection with Unified Multi-Granularity Alignment
- URL: http://arxiv.org/abs/2301.00371v2
- Date: Mon, 18 Mar 2024 07:57:19 GMT
- Title: Robust Domain Adaptive Object Detection with Unified Multi-Granularity Alignment
- Authors: Libo Zhang, Wenzhang Zhou, Heng Fan, Tiejian Luo, Haibin Ling,
- Abstract summary: Domain adaptive detection aims to improve the generalization of detectors on target domain.
Recent approaches achieve domain adaption through feature alignment in different granularities via adversarial learning.
We introduce a unified multi-granularity alignment (MGA)-based detection framework for domain-invariant feature learning.
- Score: 59.831917206058435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain adaptive detection aims to improve the generalization of detectors on target domain. To reduce discrepancy in feature distributions between two domains, recent approaches achieve domain adaption through feature alignment in different granularities via adversarial learning. However, they neglect the relationship between multiple granularities and different features in alignment, degrading detection. Addressing this, we introduce a unified multi-granularity alignment (MGA)-based detection framework for domain-invariant feature learning. The key is to encode the dependencies across different granularities including pixel-, instance-, and category-levels simultaneously to align two domains. Specifically, based on pixel-level features, we first develop an omni-scale gated fusion (OSGF) module to aggregate discriminative representations of instances with scale-aware convolutions, leading to robust multi-scale detection. Besides, we introduce multi-granularity discriminators to identify where, either source or target domains, different granularities of samples come from. Note that, MGA not only leverages instance discriminability in different categories but also exploits category consistency between two domains for detection. Furthermore, we present an adaptive exponential moving average (AEMA) strategy that explores model assessments for model update to improve pseudo labels and alleviate local misalignment problem, boosting detection robustness. Extensive experiments on multiple domain adaption scenarios validate the superiority of MGA over other approaches on FCOS and Faster R-CNN detectors. Code will be released at https://github.com/tiankongzhang/MGA.
Related papers
- Semi Supervised Heterogeneous Domain Adaptation via Disentanglement and Pseudo-Labelling [4.33404822906643]
Semi-supervised domain adaptation methods leverage information from a source labelled domain to generalize over a scarcely labelled target domain.
Such a setting is denoted as Semi-Supervised Heterogeneous Domain Adaptation (SSHDA)
We introduce SHeDD (Semi-supervised Heterogeneous Domain Adaptation via Disentanglement) an end-to-end neural framework tailored to learning a target domain.
arXiv Detail & Related papers (2024-06-20T08:02:49Z) - Multi-Scale Multi-Target Domain Adaptation for Angle Closure
Classification [50.658613573816254]
We propose a novel Multi-scale Multi-target Domain Adversarial Network (M2DAN) for angle closure classification.
Based on these domain-invariant features at different scales, the deep model trained on the source domain is able to classify angle closure on multiple target domains.
arXiv Detail & Related papers (2022-08-25T15:27:55Z) - Multi-Granularity Alignment Domain Adaptation for Object Detection [33.32519045960187]
Domain adaptive object detection is challenging due to distinctive data distribution between source domain and target domain.
We propose a unified multi-granularity alignment based object detection framework towards domain-invariant feature learning.
arXiv Detail & Related papers (2022-03-31T09:05:06Z) - Domain Generalisation for Object Detection under Covariate and Concept Shift [10.32461766065764]
Domain generalisation aims to promote the learning of domain-invariant features while suppressing domain-specific features.
An approach to domain generalisation for object detection is proposed, the first such approach applicable to any object detection architecture.
arXiv Detail & Related papers (2022-03-10T11:14:18Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Adversarial Dual Distinct Classifiers for Unsupervised Domain Adaptation [67.83872616307008]
Unversarial Domain adaptation (UDA) attempts to recognize the unlabeled target samples by building a learning model from a differently-distributed labeled source domain.
In this paper, we propose a novel Adrial Dual Distincts Network (AD$2$CN) to align the source and target domain data distribution simultaneously with matching task-specific category boundaries.
To be specific, a domain-invariant feature generator is exploited to embed the source and target data into a latent common space with the guidance of discriminative cross-domain alignment.
arXiv Detail & Related papers (2020-08-27T01:29:10Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
Partial domain adaptation (PDA) deals with a realistic and challenging problem when the source domain label space substitutes the target domain.
We propose an Adaptively-Accumulated Knowledge Transfer framework (A$2$KT) to align the relevant categories across two domains.
arXiv Detail & Related papers (2020-08-27T00:53:43Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
We propose a Graph-induced Prototype Alignment (GPA) framework to seek for category-level domain alignment.
In addition, in order to alleviate the negative effect of class-imbalance on domain adaptation, we design a Class-reweighted Contrastive Loss.
Our approach outperforms existing methods with a remarkable margin.
arXiv Detail & Related papers (2020-03-28T17:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.