論文の概要: Reinforcement Learning with Success Induced Task Prioritization
- arxiv url: http://arxiv.org/abs/2301.00691v1
- Date: Fri, 30 Dec 2022 12:32:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-03 14:08:24.142396
- Title: Reinforcement Learning with Success Induced Task Prioritization
- Title(参考訳): 成功によるタスク優先化による強化学習
- Authors: Maria Nesterova, Alexey Skrynnik, Aleksandr Panov
- Abstract要約: 本稿では,自動カリキュラム学習のためのフレームワークであるSuccess induced Task Prioritization (SITP)を紹介する。
アルゴリズムはエージェントに最速の学習を提供するタスクの順序を選択する。
我々は,SITPが他のカリキュラム設計手法と一致するか,あるいは上回っていることを実証する。
- 参考スコア(独自算出の注目度): 68.8204255655161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many challenging reinforcement learning (RL) problems require designing a
distribution of tasks that can be applied to train effective policies. This
distribution of tasks can be specified by the curriculum. A curriculum is meant
to improve the results of learning and accelerate it. We introduce Success
Induced Task Prioritization (SITP), a framework for automatic curriculum
learning, where a task sequence is created based on the success rate of each
task. In this setting, each task is an algorithmically created environment
instance with a unique configuration. The algorithm selects the order of tasks
that provide the fastest learning for agents. The probability of selecting any
of the tasks for the next stage of learning is determined by evaluating its
performance score in previous stages. Experiments were carried out in the
Partially Observable Grid Environment for Multiple Agents (POGEMA) and Procgen
benchmark. We demonstrate that SITP matches or surpasses the results of other
curriculum design methods. Our method can be implemented with handful of minor
modifications to any standard RL framework and provides useful prioritization
with minimal computational overhead.
- Abstract(参考訳): 多くの困難な強化学習(RL)問題は、効果的な政策の訓練に応用可能なタスクの分散を設計する必要がある。
このタスクの分布はカリキュラムによって指定できる。
カリキュラムは、学習の結果を改善し、それを加速することを目的としています。
本稿では,各タスクの成功率に基づいてタスクシーケンスを生成する自動カリキュラム学習フレームワークであるSuccess induced Task Prioritization (SITP)を紹介する。
この設定では、各タスクは独自の設定を持つアルゴリズムで生成された環境インスタンスである。
アルゴリズムはエージェントに最速の学習を提供するタスクの順序を選択する。
学習の次の段階におけるタスクを選択する確率は、そのパフォーマンススコアを前段で評価することにより決定される。
複数のエージェント(pogema)とprocgenベンチマークのための部分観測可能なグリッド環境で実験を行った。
我々は,SITPが他のカリキュラム設計手法と一致するか,あるいは上回っていることを示す。
提案手法は,任意の標準RLフレームワークにわずかな修正を加えて実装可能であり,計算オーバーヘッドを最小限に抑えることができる。
関連論文リスト
- Proximal Curriculum with Task Correlations for Deep Reinforcement Learning [25.10619062353793]
エージェントの最終性能を複雑なタスクに対する目標分布として測定するコンテキストマルチタスク設定におけるカリキュラム設計について検討する。
本稿では,タスク相関を利用してエージェントの学習を目標分布に向けて進めながら,エージェントにとって難しくないタスクを選択する必要性を効果的にバランスさせる新しいカリキュラムProCuRL-Targetを提案する。
論文 参考訳(メタデータ) (2024-05-03T21:07:54Z) - Sample Efficient Reinforcement Learning by Automatically Learning to
Compose Subtasks [3.1594865504808944]
サブタスクを表すラベルのセットを与えられた場合、サンプル効率のために報酬関数を自動的に構成するRLアルゴリズムを提案する。
我々は,様々なスパース・リワード環境におけるアルゴリズムの評価を行った。
論文 参考訳(メタデータ) (2024-01-25T15:06:40Z) - Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
本稿では,学習用マルチタスクデータの順序を列挙するデータカリキュラム,すなわちData-CUBEを提案する。
タスクレベルでは、タスク間の干渉リスクを最小化するために最適なタスクオーダーを見つけることを目的としている。
インスタンスレベルでは、タスク毎のすべてのインスタンスの難易度を測定し、トレーニングのためにそれらを簡単に微分できるミニバッチに分割します。
論文 参考訳(メタデータ) (2024-01-07T18:12:20Z) - Active Instruction Tuning: Improving Cross-Task Generalization by
Training on Prompt Sensitive Tasks [101.40633115037983]
インストラクションチューニング(IT)は,大規模言語モデル(LLM)を命令付き多種多様なタスクで訓練することにより,印象的なゼロショット一般化を実現する。
ITモデルの性能と一般化性を改善するために、新しいタスクをどのように選択するかは、未解決の問題である。
本稿では,情報的タスクを識別する新しいフレームワークである即時不確実性に基づくアクティブな指導チューニングを提案し,選択したタスク上でモデルをアクティブにチューニングする。
論文 参考訳(メタデータ) (2023-11-01T04:40:05Z) - Active Task Randomization: Learning Robust Skills via Unsupervised
Generation of Diverse and Feasible Tasks [37.73239471412444]
我々は、教師なしのトレーニングタスクの生成を通じて、堅牢なスキルを学ぶアプローチであるActive Task Randomization (ATR)を導入する。
ATRは、タスクの多様性と実現可能性のバランスをとることで、堅牢なスキルを学ぶために、初期環境状態と操作目標からなる適切なタスクを選択する。
本研究では,視覚的入力に基づく逐次操作問題の解決のために,タスクプランナが学習スキルを構成することを実証する。
論文 参考訳(メタデータ) (2022-11-11T11:24:55Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
本稿では,タスクがサブタスクグラフによって特徴づけられる,数発の強化学習問題として定式化する。
我々のマルチタスクサブタスクグラフ推論器(MTSGI)は、トレーニングタスクから、まず、サブタスクグラフの観点から、一般的なハイレベルなタスク構造を推測する。
提案手法は,2次元グリッドワールドおよび複雑なWebナビゲーション領域において,タスクの共通基盤構造を学習し,活用し,未知のタスクへの適応を高速化する。
論文 参考訳(メタデータ) (2022-05-25T10:44:25Z) - Selecting task with optimal transport self-supervised learning for
few-shot classification [15.088213168796772]
Few-Shot分類は、トレーニングプロセスで利用可能なサンプルはわずかである、という問題を解決することを目的としている。
本稿では,Few-Shot 学習のための類似タスクを選択して学習セットを構築するために,OTTS (Optimal Transport Task Selecting) という新しいタスク選択アルゴリズムを提案する。
OTTSは最適な輸送距離を計算してタスク類似度を測定し、自己監督戦略を通じてモデルトレーニングを完了させる。
論文 参考訳(メタデータ) (2022-04-01T08:45:29Z) - Efficiently Identifying Task Groupings for Multi-Task Learning [55.80489920205404]
マルチタスク学習は、あるタスクによって学習された情報を活用して、他のタスクのトレーニングに役立てることができる。
マルチタスク学習モデルにおいて、どのタスクを一緒にトレーニングすべきかを選択するアプローチを提案する。
本手法は,全タスクを協調学習し,タスクの勾配が他のタスクの損失に影響を及ぼす影響を定量化する。
論文 参考訳(メタデータ) (2021-09-10T02:01:43Z) - Adaptive Procedural Task Generation for Hard-Exploration Problems [78.20918366839399]
ハード探索問題における強化学習を容易にするために,適応手続きタスク生成(APT-Gen)を導入する。
私たちのアプローチの中心は、ブラックボックスの手続き生成モジュールを通じてパラメータ化されたタスク空間からタスクを作成することを学習するタスクジェネレータです。
学習進捗の直接指標がない場合のカリキュラム学習を可能にするために,生成したタスクにおけるエージェントのパフォーマンスと,対象タスクとの類似性をバランスさせてタスクジェネレータを訓練することを提案する。
論文 参考訳(メタデータ) (2020-07-01T09:38:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。