論文の概要: Betrayed by Captions: Joint Caption Grounding and Generation for Open
Vocabulary Instance Segmentation
- arxiv url: http://arxiv.org/abs/2301.00805v2
- Date: Sun, 23 Jul 2023 10:35:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-26 00:10:50.600813
- Title: Betrayed by Captions: Joint Caption Grounding and Generation for Open
Vocabulary Instance Segmentation
- Title(参考訳): キャプションで裏切られた:open vocabularyインスタンスセグメンテーションのための共同キャプショングラウンドと生成
- Authors: Jianzong Wu, Xiangtai Li, Henghui Ding, Xia Li, Guangliang Cheng,
Yunhai Tong, Chen Change Loy
- Abstract要約: オープンな語彙のインスタンスセグメンテーションに注目し、セグメンテーションモデルを拡張して、インスタンスレベルの新しいカテゴリを分類し、セグメンテーションする。
これまでは、画像領域と名詞の字幕間の1対1のマッピングを確立するために、大量の字幕データセットと複雑なパイプラインに頼っていた。
我々は,一致したオブジェクトのみに着目して学習効率を向上させる新しいグラウンドニング損失を取り入れた,共同の textbf Caption Grounding and Generation (CGG) フレームワークを考案した。
- 参考スコア(独自算出の注目度): 80.48979302400868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we focus on open vocabulary instance segmentation to expand a
segmentation model to classify and segment instance-level novel categories.
Previous approaches have relied on massive caption datasets and complex
pipelines to establish one-to-one mappings between image regions and words in
captions. However, such methods build noisy supervision by matching non-visible
words to image regions, such as adjectives and verbs. Meanwhile, context words
are also important for inferring the existence of novel objects as they show
high inter-correlations with novel categories. To overcome these limitations,
we devise a joint \textbf{Caption Grounding and Generation (CGG)} framework,
which incorporates a novel grounding loss that only focuses on matching object
nouns to improve learning efficiency. We also introduce a caption generation
head that enables additional supervision and contextual modeling as a
complementation to the grounding loss. Our analysis and results demonstrate
that grounding and generation components complement each other, significantly
enhancing the segmentation performance for novel classes. Experiments on the
COCO dataset with two settings: Open Vocabulary Instance Segmentation (OVIS)
and Open Set Panoptic Segmentation (OSPS) demonstrate the superiority of the
CGG. Specifically, CGG achieves a substantial improvement of 6.8% mAP for novel
classes without extra data on the OVIS task and 15% PQ improvements for novel
classes on the OSPS benchmark.
- Abstract(参考訳): 本研究では,オープン語彙のインスタンスセグメンテーションに着目し,セグメンテーションモデルを拡張して,インスタンスレベルの新規カテゴリを分類・分割する。
従来のアプローチでは、大量のキャプションデータセットと複雑なパイプラインを使用して、キャプション内の画像領域と単語間の1対1のマッピングを確立してきた。
しかし、このような手法は、形容詞や動詞などの画像領域に非可視的な単語をマッチングすることで、ノイズの多い監視を構築する。
一方、文脈語は、新しいカテゴリーと高い相関関係を示すため、新しい対象の存在を推測する上でも重要である。
このような制約を克服するため、学習効率を向上させるために、一致したオブジェクト名詞にのみ焦点をあてる新しい接地損失を取り入れた、共同で \textbf{Caption Grounding and Generation (CGG) フレームワークを考案した。
また,接地損失の補足として,追加の監督と文脈モデリングを可能にするキャプション生成ヘッドを導入する。
解析と結果から,新たな授業のセグメンテーション性能を大幅に向上させ,グラウンドディングとジェネレーションコンポーネントが相互に補完することを示す。
OVIS(Open Vocabulary Instance Segmentation)とOSPS(Open Set Panoptic Segmentation)の2つの設定によるCOCOデータセットの実験は、CGGの優位性を示している。
特に、CGGはOVISタスクの余分なデータなしで新規クラスの6.8% mAPを大幅に改善し、OSPSベンチマークでは新しいクラスの15%のPQ改善を実現している。
関連論文リスト
- USE: Universal Segment Embeddings for Open-Vocabulary Image Segmentation [33.11010205890195]
オープン語彙のイメージセグメンテーションにおける大きな課題は、これらのセグメンテーションをテキスト定義カテゴリに正確に分類することにある。
この課題に対処するために、Universal Segment Embedding(USE)フレームワークを紹介します。
本フレームワークは,1)大量のセグメントテキストペアを様々な粒度で効率的にキュレートするように設計されたデータパイプライン,2)テキスト定義のカテゴリに精度の高いセグメント分類を可能にする普遍的なセグメント埋め込みモデルからなる。
論文 参考訳(メタデータ) (2024-06-07T21:41:18Z) - Vocabulary-free Image Classification and Semantic Segmentation [71.78089106671581]
本稿では,Vocabulary-free Image Classification (VIC)タスクを導入する。これは,制約のない言語による意味空間から,既知の語彙を必要とせずに,入力画像にクラスを割り当てることを目的としている。
VICは、細かなカテゴリを含む数百万の概念を含む意味空間の広さのために、挑戦的である。
本稿では,事前学習された視覚言語モデルと外部データベースを利用した学習自由度手法CaSEDを提案する。
論文 参考訳(メタデータ) (2024-04-16T19:27:21Z) - From Text Segmentation to Smart Chaptering: A Novel Benchmark for
Structuring Video Transcriptions [63.11097464396147]
音声コンテンツに焦点をあてた新しいベンチマークYTSegを導入し、その内容は本質的に非構造的であり、トポロジと構造的にも多様である。
また,高効率な階層分割モデルMiniSegを導入する。
論文 参考訳(メタデータ) (2024-02-27T15:59:37Z) - Hierarchical Open-vocabulary Universal Image Segmentation [48.008887320870244]
Open-vocabulary Image segmentationは、任意のテキスト記述に従ってイメージをセマンティック領域に分割することを目的としている。
我々は,「モノ」と「スタッフ」の双方に対して,分離されたテキストイメージ融合機構と表現学習モジュールを提案する。
HIPIE tackles, HIerarchical, oPen-vocabulary, unIvErsal segmentation task in a unified framework。
論文 参考訳(メタデータ) (2023-07-03T06:02:15Z) - Diffusion Models for Open-Vocabulary Segmentation [79.02153797465324]
OVDiffは、教師なしオープン語彙セグメンテーションに生成テキストから画像への拡散モデルを利用する新しい手法である。
トレーニング済みのコンポーネントのみに依存し、トレーニングなしで合成セグメンタを直接出力する。
論文 参考訳(メタデータ) (2023-06-15T17:51:28Z) - Adaptively Clustering Neighbor Elements for Image-Text Generation [78.82346492527425]
我々はtextbfACF と呼ばれるトランスフォーマーに基づく新しい画像テキスト生成モデルを提案する。
ACFは、視覚パッチをオブジェクト領域と言語単語に適応的にクラスタリングし、暗黙的にオブジェクト・フレーズのアライメントを学習する。
実験の結果,ほとんどのSOTAキャプションやVQAモデルよりも優れたACFの有効性が示された。
論文 参考訳(メタデータ) (2023-01-05T08:37:36Z) - SegCLIP: Patch Aggregation with Learnable Centers for Open-Vocabulary
Semantic Segmentation [26.079055078561986]
オープン語彙セグメンテーションのためのCLIPベースのSegCLIPモデルを提案する。
主なアイデアは、テキストイメージペアのトレーニングを通じて、学習可能な中心をセマンティック領域に集めることである。
実験結果から,本モデルでは高いセグメンテーション精度が得られた。
論文 参考訳(メタデータ) (2022-11-27T12:38:52Z) - Open-world Semantic Segmentation via Contrasting and Clustering
Vision-Language Embedding [95.78002228538841]
本研究では,様々なオープンワールドカテゴリのセマンティックオブジェクトを高密度アノテーションを使わずにセマンティックオブジェクトのセマンティックオブジェクトのセマンティック化を学習するための,新しいオープンワールドセマンティックセマンティックセマンティックセマンティクスパイプラインを提案する。
提案手法は任意のカテゴリのオブジェクトを直接分割し、3つのベンチマークデータセット上でデータラベリングを必要とするゼロショットセグメンテーション法より優れている。
論文 参考訳(メタデータ) (2022-07-18T09:20:04Z) - Two-Level Transformer and Auxiliary Coherence Modeling for Improved Text
Segmentation [9.416757363901295]
単純だが明示的なコヒーレンスモデリングを用いたテキストセグメンテーションのための新しい教師付きモデルを提案する。
我々のモデルは、2つの階層的に連結されたトランスフォーマーネットワークからなるニューラルネットワークであり、文レベルのセグメンテーション目標と、正しい文列と腐敗した文列を区別するコヒーレンス目標を結合するマルチタスク学習モデルである。
論文 参考訳(メタデータ) (2020-01-03T17:06:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。