論文の概要: Distributed Machine Learning for UAV Swarms: Computing, Sensing, and
Semantics
- arxiv url: http://arxiv.org/abs/2301.00912v1
- Date: Tue, 3 Jan 2023 01:05:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-04 14:02:04.574872
- Title: Distributed Machine Learning for UAV Swarms: Computing, Sensing, and
Semantics
- Title(参考訳): uav swarmsのための分散機械学習:コンピューティング、センシング、セマンティクス
- Authors: Yahao Ding, Zhaohui Yang, Quoc-Viet Pham, Zhaoyang Zhang, Mohammad
Shikh-Bahaei
- Abstract要約: 分散学習(DL)により、UAVの群れは、通信サービス、多方向リモート監視、ターゲット追跡をインテリジェントに提供できる。
まず、フェデレートラーニング(FL)、マルチエージェント強化ラーニング(MARL)、分散推論、分割ラーニングなどの一般的なDLアルゴリズムを紹介する。
次に,無線通信システムにおけるUAVスワムの最先端の応用として,再構成可能なインテリジェントサーフェス(RIS),仮想現実(VR),セマンティックコミュニケーションなどを紹介し,DL対応のUAVスワムがこれらのアプリケーションで解決できる問題と課題について議論する。
- 参考スコア(独自算出の注目度): 31.921859542234998
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unmanned aerial vehicle (UAV) swarms are considered as a promising technique
for next-generation communication networks due to their flexibility, mobility,
low cost, and the ability to collaboratively and autonomously provide services.
Distributed learning (DL) enables UAV swarms to intelligently provide
communication services, multi-directional remote surveillance, and target
tracking. In this survey, we first introduce several popular DL algorithms such
as federated learning (FL), multi-agent Reinforcement Learning (MARL),
distributed inference, and split learning, and present a comprehensive overview
of their applications for UAV swarms, such as trajectory design, power control,
wireless resource allocation, user assignment, perception, and satellite
communications. Then, we present several state-of-the-art applications of UAV
swarms in wireless communication systems, such us reconfigurable intelligent
surface (RIS), virtual reality (VR), semantic communications, and discuss the
problems and challenges that DL-enabled UAV swarms can solve in these
applications. Finally, we describe open problems of using DL in UAV swarms and
future research directions of DL enabled UAV swarms. In summary, this survey
provides a comprehensive survey of various DL applications for UAV swarms in
extensive scenarios.
- Abstract(参考訳): 無人航空機(UAV)群は、柔軟性、移動性、低コスト、協調的かつ自律的なサービスを提供する能力により、次世代通信ネットワークにとって有望な技術であると考えられている。
分散学習(DL)により、UAVの群れは、通信サービス、多方向リモート監視、ターゲット追跡をインテリジェントに提供できる。
本稿では,フェデレーション学習(fl),マルチエージェント強化学習(marl),分散推論,分割学習など,いくつかの人気のあるdlアルゴリズムを紹介し,軌道設計,電力制御,無線リソース割り当て,ユーザ割当,知覚,衛星通信など,uavスウォームへの応用の包括的概要を紹介する。
次に,無線通信システムにおけるUAVスワムの最先端の応用として,再構成可能なインテリジェントサーフェス(RIS),仮想現実(VR),セマンティックコミュニケーションなどを紹介し,DL対応のUAVスワムがこれらのアプリケーションで解決できる問題と課題について議論する。
最後に,UAVSwarmにおけるDL使用のオープンな問題点と,DL有効UAVSwarmの今後の研究方向性について述べる。
要約すると、この調査は幅広いシナリオにおけるUAVスワムに対する様々なDLアプリケーションに関する包括的な調査を提供する。
関連論文リスト
- Integrating Large Language Models for UAV Control in Simulated Environments: A Modular Interaction Approach [0.3495246564946556]
本研究では,UAV制御における大規模言語モデルの適用について検討する。
UAVが自然言語コマンドを解釈し、応答できるようにすることで、LLMはUAVの制御と使用を簡素化する。
本稿では,自律的な意思決定,動的なミッション計画,状況認識の向上,安全プロトコルの改善など,LCMがUAV技術に影響を与えるいくつかの重要な領域について論じる。
論文 参考訳(メタデータ) (2024-10-23T06:56:53Z) - Graph Koopman Autoencoder for Predictive Covert Communication Against
UAV Surveillance [29.15836826461713]
低確率検出(LPD)通信は、無線周波数(RF)信号の存在を曖昧にすることを目的としている。
無人航空機(UAV)は、特定の関心領域をホバリングすることで地上からのRF信号を検出することができる。
本稿では,複数の固定翼UAVの軌跡を予測するために,グラフニューラルネットワーク(GNN)とクープマン理論を組み合わせた新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-23T23:42:55Z) - Machine Learning-Aided Operations and Communications of Unmanned Aerial
Vehicles: A Contemporary Survey [43.573379573511765]
UAVとMLの技術の融合が進行中であることは、前例のない知性と自律性を備えたUAVの大幅な相乗効果と強化を生み出している。
本調査は,UAV運用および通信に使用されるML技術の概要をタイムリーかつ包括的に示すことを目的としている。
論文 参考訳(メタデータ) (2022-11-07T15:34:36Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - Optimization for Master-UAV-powered Auxiliary-Aerial-IRS-assisted IoT
Networks: An Option-based Multi-agent Hierarchical Deep Reinforcement
Learning Approach [56.84948632954274]
本稿では,無人航空機(MUAV)搭載のIoT(Internet of Things)ネットワークについて検討する。
本稿では、インテリジェント反射面(IRS)を備えた充電可能な補助UAV(AUAV)を用いて、MUAVからの通信信号を強化することを提案する。
提案モデルでは,IoTネットワークの蓄積スループットを最大化するために,これらのエネルギー制限されたUAVの最適協調戦略について検討する。
論文 参考訳(メタデータ) (2021-12-20T15:45:28Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
無人航空機(UAV)は現在、無線通信におけるネットワーク性能とカバレッジを高めるために配備され始めている。
UAV支援モノのインターネット(IoT)のための最適な資源配分方式を得ることは困難である
本稿では,UAVの最も短い飛行経路に依存しつつ,IoTデバイスから収集したデータ量を最大化しながら,新しいUAV支援IoTシステムを設計する。
論文 参考訳(メタデータ) (2021-06-06T14:08:41Z) - Serverless Federated Learning for UAV Networks: Architecture,
Challenges, and Opportunities [27.366598254560994]
無人航空機(UAV)は、民間および軍事分野の次世代無線ネットワークにおける広範なアプリケーションをサポートすることを想定しています。
本稿では,中央エンティティを持たないUAVネットワーク内でFLを実現する,SELF-UNという新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-04-15T16:11:13Z) - Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking [59.06167734555191]
Unmanned Aerial Vehicle (UAV)は、商業とレクリエーションの両方に多くの応用を提供している。
我々は、UAVを追跡し、位置や軌道などの豊富な情報を提供するという課題を考察する。
300以上のビデオペアが580k以上の手動で注釈付きバウンディングボックスを含むデータセット、Anti-UAVを提案します。
論文 参考訳(メタデータ) (2021-01-21T07:00:15Z) - Artificial Intelligence for UAV-enabled Wireless Networks: A Survey [72.10851256475742]
無人航空機(UAV)は次世代無線通信ネットワークにおいて有望な技術であると考えられている。
人工知能(AI)は近年急速に成長し、成功している。
UAVベースのネットワークにおけるAIの潜在的な応用について概観する。
論文 参考訳(メタデータ) (2020-09-24T07:11:31Z) - Artificial Intelligence Aided Next-Generation Networks Relying on UAVs [140.42435857856455]
動的環境において,人工知能(AI)による無人航空機(UAV)による次世代ネットワーク支援が提案されている。
AI対応のUAV支援無線ネットワーク(UAWN)では、複数のUAVが航空基地局として使用され、ダイナミックな環境に迅速に適応することができる。
AIフレームワークの利点として、従来のUAWNのいくつかの課題が回避され、ネットワークパフォーマンスが向上し、信頼性が向上し、アジャイル適応性が向上する。
論文 参考訳(メタデータ) (2020-01-28T15:10:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。