Benchmarking the Robustness of LiDAR Semantic Segmentation Models
- URL: http://arxiv.org/abs/2301.00970v3
- Date: Sun, 7 Jan 2024 15:02:26 GMT
- Title: Benchmarking the Robustness of LiDAR Semantic Segmentation Models
- Authors: Xu Yan, Chaoda Zheng, Ying Xue, Zhen Li, Shuguang Cui, Dengxin Dai
- Abstract summary: In this paper, we aim to comprehensively analyze the robustness of LiDAR semantic segmentation models under various corruptions.
We propose a new benchmark called SemanticKITTI-C, which features 16 out-of-domain LiDAR corruptions in three groups, namely adverse weather, measurement noise and cross-device discrepancy.
We design a robust LiDAR segmentation model (RLSeg) which greatly boosts the robustness with simple but effective modifications.
- Score: 78.6597530416523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When using LiDAR semantic segmentation models for safety-critical
applications such as autonomous driving, it is essential to understand and
improve their robustness with respect to a large range of LiDAR corruptions. In
this paper, we aim to comprehensively analyze the robustness of LiDAR semantic
segmentation models under various corruptions. To rigorously evaluate the
robustness and generalizability of current approaches, we propose a new
benchmark called SemanticKITTI-C, which features 16 out-of-domain LiDAR
corruptions in three groups, namely adverse weather, measurement noise and
cross-device discrepancy. Then, we systematically investigate 11 LiDAR semantic
segmentation models, especially spanning different input representations (e.g.,
point clouds, voxels, projected images, and etc.), network architectures and
training schemes. Through this study, we obtain two insights: 1) We find out
that the input representation plays a crucial role in robustness. Specifically,
under specific corruptions, different representations perform variously. 2)
Although state-of-the-art methods on LiDAR semantic segmentation achieve
promising results on clean data, they are less robust when dealing with noisy
data. Finally, based on the above observations, we design a robust LiDAR
segmentation model (RLSeg) which greatly boosts the robustness with simple but
effective modifications. It is promising that our benchmark, comprehensive
analysis, and observations can boost future research in robust LiDAR semantic
segmentation for safety-critical applications.
Related papers
- Reflectivity Is All You Need!: Advancing LiDAR Semantic Segmentation [11.684330305297523]
This paper explores the advantages of employing calibrated intensity (also referred to as reflectivity) within learning-based LiDAR semantic segmentation frameworks.
We show that replacing intensity with reflectivity results in a 4% improvement in mean Intersection over Union for off-road scenarios.
We demonstrate the potential benefits of using calibrated intensity for semantic segmentation in urban environments.
arXiv Detail & Related papers (2024-03-19T22:57:03Z) - Off-Road LiDAR Intensity Based Semantic Segmentation [11.684330305297523]
Learning-based LiDAR semantic segmentation utilizes machine learning techniques to automatically classify objects in LiDAR point clouds.
We address this problem by harnessing the LiDAR intensity parameter to enhance object segmentation in off-road environments.
Our approach was evaluated in the RELLIS-3D data set and yielded promising results as a preliminary analysis with improved mIoU for classes "puddle" and "grass"
arXiv Detail & Related papers (2024-01-02T21:27:43Z) - Learning to Generate Training Datasets for Robust Semantic Segmentation [37.9308918593436]
We propose a novel approach to improve the robustness of semantic segmentation techniques.
We design Robusta, a novel conditional generative adversarial network to generate realistic and plausible perturbed images.
Our results suggest that this approach could be valuable in safety-critical applications.
arXiv Detail & Related papers (2023-08-01T10:02:26Z) - Robustness Analysis on Foundational Segmentation Models [28.01242494123917]
In this work, we perform a robustness analysis of Visual Foundation Models (VFMs) for segmentation tasks.
We benchmark seven state-of-the-art segmentation architectures using 2 different datasets.
Our findings reveal several key insights: VFMs exhibit vulnerabilities to compression-induced corruptions, despite not outpacing all of unimodal models in robustness, multimodal models show competitive resilience in zero-shot scenarios, and VFMs demonstrate enhanced robustness for certain object categories.
arXiv Detail & Related papers (2023-06-15T16:59:42Z) - Disentanglement via Latent Quantization [60.37109712033694]
In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space.
We demonstrate the broad applicability of this approach by adding it to both basic data-re (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models.
arXiv Detail & Related papers (2023-05-28T06:30:29Z) - Hierarchical Disentanglement-Alignment Network for Robust SAR Vehicle
Recognition [18.38295403066007]
HDANet integrates feature disentanglement and alignment into a unified framework.
The proposed method demonstrates impressive robustness across nine operating conditions in the MSTAR dataset.
arXiv Detail & Related papers (2023-04-07T09:11:29Z) - Rethinking Range View Representation for LiDAR Segmentation [66.73116059734788]
"Many-to-one" mapping, semantic incoherence, and shape deformation are possible impediments against effective learning from range view projections.
We present RangeFormer, a full-cycle framework comprising novel designs across network architecture, data augmentation, and post-processing.
We show that, for the first time, a range view method is able to surpass the point, voxel, and multi-view fusion counterparts in the competing LiDAR semantic and panoptic segmentation benchmarks.
arXiv Detail & Related papers (2023-03-09T16:13:27Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
Two critical sensors for 3D perception in autonomous driving are the camera and the LiDAR.
fusing these two modalities can significantly boost the performance of 3D perception models.
We benchmark the state-of-the-art fusion methods for the first time.
arXiv Detail & Related papers (2022-05-30T09:35:37Z) - Robust Self-Supervised LiDAR Odometry via Representative Structure
Discovery and 3D Inherent Error Modeling [67.75095378830694]
We develop a two-stage odometry estimation network, where we obtain the ego-motion by estimating a set of sub-region transformations.
In this paper, we aim to alleviate the influence of unreliable structures in training, inference and mapping phases.
Our two-frame odometry outperforms the previous state of the arts by 16%/12% in terms of translational/rotational errors.
arXiv Detail & Related papers (2022-02-27T12:52:27Z) - LiDAR-based Panoptic Segmentation via Dynamic Shifting Network [56.71765153629892]
LiDAR-based panoptic segmentation aims to parse both objects and scenes in a unified manner.
We propose the Dynamic Shifting Network (DS-Net), which serves as an effective panoptic segmentation framework in the point cloud realm.
Our proposed DS-Net achieves superior accuracies over current state-of-the-art methods.
arXiv Detail & Related papers (2020-11-24T08:44:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.