Hierarchical Disentanglement-Alignment Network for Robust SAR Vehicle
Recognition
- URL: http://arxiv.org/abs/2304.03550v2
- Date: Fri, 13 Oct 2023 13:38:26 GMT
- Title: Hierarchical Disentanglement-Alignment Network for Robust SAR Vehicle
Recognition
- Authors: Weijie Li, Wei Yang, Wenpeng Zhang, Tianpeng Liu, Yongxiang Liu, Li
Liu
- Abstract summary: HDANet integrates feature disentanglement and alignment into a unified framework.
The proposed method demonstrates impressive robustness across nine operating conditions in the MSTAR dataset.
- Score: 18.38295403066007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vehicle recognition is a fundamental problem in SAR image interpretation.
However, robustly recognizing vehicle targets is a challenging task in SAR due
to the large intraclass variations and small interclass variations.
Additionally, the lack of large datasets further complicates the task. Inspired
by the analysis of target signature variations and deep learning
explainability, this paper proposes a novel domain alignment framework named
the Hierarchical Disentanglement-Alignment Network (HDANet) to achieve
robustness under various operating conditions. Concisely, HDANet integrates
feature disentanglement and alignment into a unified framework with three
modules: domain data generation, multitask-assisted mask disentanglement, and
domain alignment of target features. The first module generates diverse data
for alignment, and three simple but effective data augmentation methods are
designed to simulate target signature variations. The second module
disentangles the target features from background clutter using the
multitask-assisted mask to prevent clutter from interfering with subsequent
alignment. The third module employs a contrastive loss for domain alignment to
extract robust target features from generated diverse data and disentangled
features. Lastly, the proposed method demonstrates impressive robustness across
nine operating conditions in the MSTAR dataset, and extensive qualitative and
quantitative analyses validate the effectiveness of our framework.
Related papers
- CTS: Sim-to-Real Unsupervised Domain Adaptation on 3D Detection [16.96201890965781]
This paper presents a novel framework to transfer models from labeled simulation to unlabeled reality domains.
Experimental results demonstrate that our proposed approach significantly enhances the sim-to-real domain adaptation capability of 3D object detection models.
arXiv Detail & Related papers (2024-06-26T07:31:16Z) - Multimodal Collaboration Networks for Geospatial Vehicle Detection in Dense, Occluded, and Large-Scale Events [29.86323896541765]
In large-scale disaster events, the planning of optimal rescue routes depends on the object detection ability at the disaster scene.
Existing methods, which are typically based on the RGB modality, struggle to distinguish targets with similar colors and textures in crowded environments.
We propose a multimodal collaboration network for dense and occluded vehicle detection, MuDet.
arXiv Detail & Related papers (2024-05-14T00:51:15Z) - Improving Anomaly Segmentation with Multi-Granularity Cross-Domain
Alignment [17.086123737443714]
Anomaly segmentation plays a pivotal role in identifying atypical objects in images, crucial for hazard detection in autonomous driving systems.
While existing methods demonstrate noteworthy results on synthetic data, they often fail to consider the disparity between synthetic and real-world data domains.
We introduce the Multi-Granularity Cross-Domain Alignment framework, tailored to harmonize features across domains at both the scene and individual sample levels.
arXiv Detail & Related papers (2023-08-16T22:54:49Z) - Density-Insensitive Unsupervised Domain Adaption on 3D Object Detection [19.703181080679176]
3D object detection from point clouds is crucial in safety-critical autonomous driving.
We propose a density-insensitive domain adaption framework to address the density-induced domain gap.
Experimental results on three widely adopted 3D object detection datasets demonstrate that our proposed domain adaption method outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2023-04-19T06:33:07Z) - Benchmarking the Robustness of LiDAR Semantic Segmentation Models [78.6597530416523]
In this paper, we aim to comprehensively analyze the robustness of LiDAR semantic segmentation models under various corruptions.
We propose a new benchmark called SemanticKITTI-C, which features 16 out-of-domain LiDAR corruptions in three groups, namely adverse weather, measurement noise and cross-device discrepancy.
We design a robust LiDAR segmentation model (RLSeg) which greatly boosts the robustness with simple but effective modifications.
arXiv Detail & Related papers (2023-01-03T06:47:31Z) - Unsupervised Domain Adaptation for Monocular 3D Object Detection via
Self-Training [57.25828870799331]
We propose STMono3D, a new self-teaching framework for unsupervised domain adaptation on Mono3D.
We develop a teacher-student paradigm to generate adaptive pseudo labels on the target domain.
STMono3D achieves remarkable performance on all evaluated datasets and even surpasses fully supervised results on the KITTI 3D object detection dataset.
arXiv Detail & Related papers (2022-04-25T12:23:07Z) - An Unsupervised Domain Adaptive Approach for Multimodal 2D Object
Detection in Adverse Weather Conditions [5.217255784808035]
We propose an unsupervised domain adaptation framework to bridge the domain gap between source and target domains.
We use a data augmentation scheme that simulates weather distortions to add domain confusion and prevent overfitting on the source data.
Experiments performed on the DENSE dataset show that our method can substantially alleviate the domain gap.
arXiv Detail & Related papers (2022-03-07T18:10:40Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency [90.71745178767203]
Deep learning-based 3D object detection has achieved unprecedented success with the advent of large-scale autonomous driving datasets.
Existing 3D domain adaptive detection methods often assume prior access to the target domain annotations, which is rarely feasible in the real world.
We study a more realistic setting, unsupervised 3D domain adaptive detection, which only utilizes source domain annotations.
arXiv Detail & Related papers (2021-07-23T17:19:23Z) - Multi-Source Domain Adaptation for Object Detection [52.87890831055648]
We propose a unified Faster R-CNN based framework, termed Divide-and-Merge Spindle Network (DMSN)
DMSN can simultaneously enhance domain innative and preserve discriminative power.
We develop a novel pseudo learning algorithm to approximate optimal parameters of pseudo target subset.
arXiv Detail & Related papers (2021-06-30T03:17:20Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.