Unconditional Quantum Advantage for Sampling with Shallow Circuits
- URL: http://arxiv.org/abs/2301.00995v4
- Date: Sat, 16 Mar 2024 18:23:10 GMT
- Title: Unconditional Quantum Advantage for Sampling with Shallow Circuits
- Authors: Adam Bene Watts, Natalie Parham,
- Abstract summary: Recent work by Bravyi, Gosset, and Koenig showed that there exists a search problem that a constant-depth quantum circuit can solve.
We show that the answer to this question is yes when the number of random input bits given to the classical circuit is bounded.
We also show a similar separation between constant-depth quantum circuits with advice and classical circuits with bounded fan-in and fan-out.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work by Bravyi, Gosset, and Koenig showed that there exists a search problem that a constant-depth quantum circuit can solve, but that any constant-depth classical circuit with bounded fan-in cannot. They also pose the question: Can we achieve a similar proof of separation for an input-independent sampling task? In this paper, we show that the answer to this question is yes when the number of random input bits given to the classical circuit is bounded. We introduce a distribution $D_{n}$ over $\{0,1\}^n$ and construct a constant-depth uniform quantum circuit family $\{C_n\}_n$ such that $C_n$ samples from a distribution close to $D_{n}$ in total variation distance. For any $\delta < 1$ we also prove, unconditionally, that any classical circuit with bounded fan-in gates that takes as input $kn + n^\delta$ i.i.d. Bernouli random variables with entropy $1/k$ and produces output close to $D_{n}$ in total variation distance has depth $\Omega(\log \log n)$. This gives an unconditional proof that constant-depth quantum circuits can sample from distributions that can't be reproduced by constant-depth bounded fan-in classical circuits, even up to additive error. We also show a similar separation between constant-depth quantum circuits with advice and classical circuits with bounded fan-in and fan-out, but access to an unbounded number of i.i.d random inputs. The distribution $D_n$ and classical circuit lower bounds are inspired by work of Viola, in which he shows a different (but related) distribution cannot be sampled from approximately by constant-depth bounded fan-in classical circuits.
Related papers
- On verifiable quantum advantage with peaked circuit sampling [9.551919087634522]
We show that getting $1/textpoly(n)$ peakedness from such circuits requires $tau_p = Omega(tau_r/n)0.19)$ with overwhelming probability.
We also give numerical evidence that nontrivial peakedness is possible in this model.
arXiv Detail & Related papers (2024-04-22T18:00:06Z) - Unitary k-designs from random number-conserving quantum circuits [0.0]
Local random circuits scramble efficiently and accordingly have a range of applications in quantum information and quantum dynamics.
We show that finite moments cannot distinguish the ensemble that local random circuits generate from the Haar ensemble on the entire group of number-conserving unitaries.
arXiv Detail & Related papers (2023-06-01T18:00:00Z) - On the average-case complexity of learning output distributions of
quantum circuits [55.37943886895049]
We show that learning the output distributions of brickwork random quantum circuits is average-case hard in the statistical query model.
This learning model is widely used as an abstract computational model for most generic learning algorithms.
arXiv Detail & Related papers (2023-05-09T20:53:27Z) - Adaptive constant-depth circuits for manipulating non-abelian anyons [65.62256987706128]
Kitaev's quantum double model based on a finite group $G$.
We describe quantum circuits for (a) preparation of the ground state, (b) creation of anyon pairs separated by an arbitrary distance, and (c) non-destructive topological charge measurement.
arXiv Detail & Related papers (2022-05-04T08:10:36Z) - A lower bound on the space overhead of fault-tolerant quantum computation [51.723084600243716]
The threshold theorem is a fundamental result in the theory of fault-tolerant quantum computation.
We prove an exponential upper bound on the maximal length of fault-tolerant quantum computation with amplitude noise.
arXiv Detail & Related papers (2022-01-31T22:19:49Z) - Random quantum circuits transform local noise into global white noise [118.18170052022323]
We study the distribution over measurement outcomes of noisy random quantum circuits in the low-fidelity regime.
For local noise that is sufficiently weak and unital, correlations (measured by the linear cross-entropy benchmark) between the output distribution $p_textnoisy$ of a generic noisy circuit instance shrink exponentially.
If the noise is incoherent, the output distribution approaches the uniform distribution $p_textunif$ at precisely the same rate.
arXiv Detail & Related papers (2021-11-29T19:26:28Z) - Interactive quantum advantage with noisy, shallow Clifford circuits [0.0]
We show a strategy for adding noise tolerance to the interactive protocols of Grier and Schaeffer.
A key component of this reduction is showing average-case hardness for the classical simulation tasks.
We show that is true even for quantum tasks which are $oplus$L-hard to simulate.
arXiv Detail & Related papers (2021-02-13T00:54:45Z) - Quantum supremacy and hardness of estimating output probabilities of
quantum circuits [0.0]
We prove under the theoretical complexity of the non-concentration hierarchy that approximating the output probabilities to within $2-Omega(nlogn)$ is hard.
We show that the hardness results extend to any open neighborhood of an arbitrary (fixed) circuit including trivial circuit with identity gates.
arXiv Detail & Related papers (2021-02-03T09:20:32Z) - Random quantum circuits anti-concentrate in log depth [118.18170052022323]
We study the number of gates needed for the distribution over measurement outcomes for typical circuit instances to be anti-concentrated.
Our definition of anti-concentration is that the expected collision probability is only a constant factor larger than if the distribution were uniform.
In both the case where the gates are nearest-neighbor on a 1D ring and the case where gates are long-range, we show $O(n log(n)) gates are also sufficient.
arXiv Detail & Related papers (2020-11-24T18:44:57Z) - Quantum Coupon Collector [62.58209964224025]
We study how efficiently a $k$-element set $Ssubseteq[n]$ can be learned from a uniform superposition $|Srangle of its elements.
We give tight bounds on the number of quantum samples needed for every $k$ and $n$, and we give efficient quantum learning algorithms.
arXiv Detail & Related papers (2020-02-18T16:14:55Z) - Approximate unitary $t$-designs by short random quantum circuits using
nearest-neighbor and long-range gates [0.0]
We prove that $poly(t)cdot n1/D$-depth local random quantum circuits with two qudit nearest-neighbor gates are approximate $t$-designs in various measures.
We also prove that anti-concentration is possible in depth O(log(n) loglog(n) using a different model.
arXiv Detail & Related papers (2018-09-18T22:28:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.