Quantum supremacy and hardness of estimating output probabilities of
quantum circuits
- URL: http://arxiv.org/abs/2102.01960v3
- Date: Fri, 10 Dec 2021 13:23:38 GMT
- Title: Quantum supremacy and hardness of estimating output probabilities of
quantum circuits
- Authors: Yasuhiro Kondo, Ryuhei Mori, Ramis Movassagh
- Abstract summary: We prove under the theoretical complexity of the non-concentration hierarchy that approximating the output probabilities to within $2-Omega(nlogn)$ is hard.
We show that the hardness results extend to any open neighborhood of an arbitrary (fixed) circuit including trivial circuit with identity gates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by the recent experimental demonstrations of quantum supremacy,
proving the hardness of the output of random quantum circuits is an imperative
near term goal. We prove under the complexity theoretical assumption of the
non-collapse of the polynomial hierarchy that approximating the output
probabilities of random quantum circuits to within $\exp(-\Omega(m\log m))$
additive error is hard for any classical computer, where $m$ is the number of
gates in the quantum computation. More precisely, we show that the above
problem is $\#\mathsf{P}$-hard under $\mathsf{BPP}^{\mathsf{NP}}$ reduction. In
the recent experiments, the quantum circuit has $n$-qubits and the architecture
is a two-dimensional grid of size $\sqrt{n}\times\sqrt{n}$. Indeed for constant
depth circuits approximating the output probabilities to within
$2^{-\Omega(n\log{n})}$ is hard. For circuits of depth $\log{n}$ or $\sqrt{n}$
for which the anti-concentration property holds, approximating the output
probabilities to within $2^{-\Omega(n\log^2{n})}$ and $2^{-\Omega(n^{3/2}\log
n)}$ is hard respectively. We then show that the hardness results extend to any
open neighborhood of an arbitrary (fixed) circuit including the trivial circuit
with identity gates. We made an effort to find the best proofs and proved these
results from first principles, which do not use the standard techniques such as
the Berlekamp--Welch algorithm, the usual Paturi's lemma, and Rakhmanov's
result.
Related papers
- Circuit Complexity of Sparse Quantum State Preparation [0.0]
We show that any $n$-qubit $d$-sparse quantum state can be prepared by a quantum circuit of size $O(fracdnlog d)$ and depth $Theta(log dn)$ using at most $O(fracndlog d )$ ancillary qubits.
We also establish the lower bound $Omega(fracdnlog(n + m) + log d + n)$ on the circuit size with $m$ ancillary qubits available.
arXiv Detail & Related papers (2024-06-23T15:28:20Z) - Incompressibility and spectral gaps of random circuits [2.359282907257055]
reversible and quantum circuits form random walks on the alternating group $mathrmAlt (2n)$ and unitary group $mathrmSU (2n)$, respectively.
We prove that the gap for random reversible circuits is $Omega(n-3)$ for all $tgeq 1$, and the gap for random quantum circuits is $Omega(n-3)$ for $t leq Theta(2n/2)$.
arXiv Detail & Related papers (2024-06-11T17:23:16Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - On the average-case complexity of learning output distributions of
quantum circuits [55.37943886895049]
We show that learning the output distributions of brickwork random quantum circuits is average-case hard in the statistical query model.
This learning model is widely used as an abstract computational model for most generic learning algorithms.
arXiv Detail & Related papers (2023-05-09T20:53:27Z) - On the moments of random quantum circuits and robust quantum complexity [0.0]
We prove new lower bounds on the growth of robust quantum circuit complexity.
We show two bounds for random quantum circuits with local gates drawn from a subgroup of $SU(4)$.
arXiv Detail & Related papers (2023-03-29T18:06:03Z) - Exponential Separation between Quantum and Classical Ordered Binary
Decision Diagrams, Reordering Method and Hierarchies [68.93512627479197]
We study quantum Ordered Binary Decision Diagrams($OBDD$) model.
We prove lower bounds and upper bounds for OBDD with arbitrary order of input variables.
We extend hierarchy for read$k$-times Ordered Binary Decision Diagrams ($k$-OBDD$) of width.
arXiv Detail & Related papers (2022-04-22T12:37:56Z) - A lower bound on the space overhead of fault-tolerant quantum computation [51.723084600243716]
The threshold theorem is a fundamental result in the theory of fault-tolerant quantum computation.
We prove an exponential upper bound on the maximal length of fault-tolerant quantum computation with amplitude noise.
arXiv Detail & Related papers (2022-01-31T22:19:49Z) - Random quantum circuits transform local noise into global white noise [118.18170052022323]
We study the distribution over measurement outcomes of noisy random quantum circuits in the low-fidelity regime.
For local noise that is sufficiently weak and unital, correlations (measured by the linear cross-entropy benchmark) between the output distribution $p_textnoisy$ of a generic noisy circuit instance shrink exponentially.
If the noise is incoherent, the output distribution approaches the uniform distribution $p_textunif$ at precisely the same rate.
arXiv Detail & Related papers (2021-11-29T19:26:28Z) - Improved spectral gaps for random quantum circuits: large local
dimensions and all-to-all interactions [0.0]
We show that $1D$ random quantum circuits have a spectral gap scaling as $Omega(n-1)$, provided that $t$ is small compared to the local dimension: $t2leq O(q)$.
Our second result is an unconditional spectral gap bounded below by $Omega(n-1log-1(n) t-alpha(q))$ for random quantum circuits with all-to-all interactions.
arXiv Detail & Related papers (2020-12-09T19:00:50Z) - Random quantum circuits anti-concentrate in log depth [118.18170052022323]
We study the number of gates needed for the distribution over measurement outcomes for typical circuit instances to be anti-concentrated.
Our definition of anti-concentration is that the expected collision probability is only a constant factor larger than if the distribution were uniform.
In both the case where the gates are nearest-neighbor on a 1D ring and the case where gates are long-range, we show $O(n log(n)) gates are also sufficient.
arXiv Detail & Related papers (2020-11-24T18:44:57Z) - Approximate unitary $t$-designs by short random quantum circuits using
nearest-neighbor and long-range gates [0.0]
We prove that $poly(t)cdot n1/D$-depth local random quantum circuits with two qudit nearest-neighbor gates are approximate $t$-designs in various measures.
We also prove that anti-concentration is possible in depth O(log(n) loglog(n) using a different model.
arXiv Detail & Related papers (2018-09-18T22:28:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.