論文の概要: A Theory of Human-Like Few-Shot Learning
- arxiv url: http://arxiv.org/abs/2301.01047v1
- Date: Tue, 3 Jan 2023 11:22:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-04 14:58:41.578981
- Title: A Theory of Human-Like Few-Shot Learning
- Title(参考訳): 人型Few-Shot学習の理論
- Authors: Zhiying Jiang, Rui Wang, Dongbo Bu, Ming Li
- Abstract要約: 我々は、フォン・ノイマン=ランダウアーの原理から人間のような小ショット学習の理論を導いた。
変分オートエンコーダ(VAE)のような深部生成モデルを用いて,この理論を近似することができる。
- 参考スコア(独自算出の注目度): 14.271690184738205
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We aim to bridge the gap between our common-sense few-sample human learning
and large-data machine learning. We derive a theory of human-like few-shot
learning from von-Neuman-Landauer's principle. modelling human learning is
difficult as how people learn varies from one to another. Under commonly
accepted definitions, we prove that all human or animal few-shot learning, and
major models including Free Energy Principle and Bayesian Program Learning that
model such learning, approximate our theory, under Church-Turing thesis. We
find that deep generative model like variational autoencoder (VAE) can be used
to approximate our theory and perform significantly better than baseline models
including deep neural networks, for image recognition, low resource language
processing, and character recognition.
- Abstract(参考訳): 私たちは、常識に富んだ少数の人間の学習と大規模な機械学習のギャップを埋めることを目指しています。
我々はフォン・ノイマン=ランダウアーの原理から人間のような少数ショット学習の理論を導出する。
人間の学習のモデル化は、人々が学ぶ方法が異なるため困難です。
一般に受け入れられている定義の下では、すべての人間や動物による少数ショット学習と、そのような学習をチャーチ・チューリングの論文の下でモデル化する自由エネルギー原理やベイズプログラム学習を含む主要なモデルを証明する。
画像認識,低リソース言語処理,文字認識など,深層ニューラルネットワークを含むベースラインモデルに比べて,可変オートエンコーダ(vae)のような深層生成モデルの方が,理論の近似に有用であることがわかった。
関連論文リスト
- Aligning Machine and Human Visual Representations across Abstraction Levels [42.86478924838503]
深層ニューラルネットワークは、視覚タスクにおける人間の振る舞いのモデルなど、幅広いアプリケーションで成功している。
しかしながら、ニューラルネットワークのトレーニングと人間の学習は基本的な方法で異なり、ニューラルネットワークは人間のように堅牢に一般化できないことが多い。
人間の概念的知識は、きめ細かいものから粗いものまで階層的に構成されているが、モデル表現は、これらの抽象レベルをすべて正確に捉えているわけではない。
このミスアライメントに対処するために、私たちはまず、人間の判断を模倣するために教師モデルを訓練し、その表現から事前訓練された状態に人間のような構造を移す。
論文 参考訳(メタデータ) (2024-09-10T13:41:08Z) - Big Cooperative Learning [7.958840888809145]
基礎モデルのトレーニングは,大きな協調学習の一形態として解釈できることを示す。
本稿では,多目的データサンプリング機能を備えた新しい逆学習基盤モデルであるBigLearn-GANを提案する。
論文 参考訳(メタデータ) (2024-07-31T03:59:14Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
我々は脳のメタラーニングと連想機構に基づく生涯学習のパラダイムを設計する。
知識の抽出と知識の記憶という2つの側面から問題に取り組む。
提案した学習パラダイムが,異なるタスクのモデルを同じ最適に収束させることができることを理論的に分析した。
論文 参考訳(メタデータ) (2022-08-27T09:27:36Z) - What Artificial Neural Networks Can Tell Us About Human Language
Acquisition [47.761188531404066]
自然言語処理のための機械学習の急速な進歩は、人間がどのように言語を学ぶかについての議論を変革する可能性がある。
計算モデルによる学習可能性の関連性を高めるためには,人間に対して大きな優位性を持たず,モデル学習者を訓練する必要がある。
論文 参考訳(メタデータ) (2022-08-17T00:12:37Z) - Modeling Human Behavior Part I -- Learning and Belief Approaches [0.0]
探索とフィードバックを通じて行動のモデルや方針を学ぶ手法に焦点を当てる。
次世代の自律的適応システムは、主にAIエージェントと人間がチームとして一緒に働く。
論文 参考訳(メタデータ) (2022-05-13T07:33:49Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
我々は,膨大なマルチモーダル(視覚的・テキスト的)データを事前学習した新しい基礎モデルを開発する。
そこで本研究では,様々な下流タスクにおいて,最先端の成果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-27T12:25:21Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
機械学習は、データのパターンを認識し、予測モデリングに使用するアルゴリズムの開発と応用に関係している。
ディープラーニングは、独自の機械学習のサブフィールドになっている。
生物学的研究の文脈において、ディープラーニングは高次元の生物学的データから新しい洞察を導き出すためにますます使われてきた。
論文 参考訳(メタデータ) (2021-05-29T21:02:44Z) - Deep Learning is Singular, and That's Good [31.985399645173022]
特異モデルにおいて、パラメータの最適集合は特異点を持つ解析集合を形成し、古典的な統計的推論は適用できない。
これは、ニューラルネットワークが特異であり、ヘッセンの行列式やラプラス近似を用いた場合の「分割」が適切でないため、ディープラーニングにとって重要である。
深層学習の根本的な問題に対処する可能性にもかかわらず、特異学習理論は深層学習理論の発達過程にほとんど浸透しなかったようである。
論文 参考訳(メタデータ) (2020-10-22T09:33:59Z) - Bongard-LOGO: A New Benchmark for Human-Level Concept Learning and
Reasoning [78.13740873213223]
ボナード問題(BP)は、インテリジェントシステムにおける視覚認知へのインスピレーションとして導入された。
我々は人間レベルの概念学習と推論のための新しいベンチマークBongard-LOGOを提案する。
論文 参考訳(メタデータ) (2020-10-02T03:19:46Z) - The large learning rate phase of deep learning: the catapult mechanism [50.23041928811575]
問題解決可能なトレーニングダイナミクスを備えたニューラルネットワークのクラスを提示する。
現実的なディープラーニング環境において,モデルの予測とトレーニングのダイナミクスとの間には,よい一致がある。
我々の結果は、異なる学習率でトレーニングされたモデルの特性に光を当てたと信じています。
論文 参考訳(メタデータ) (2020-03-04T17:52:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。