論文の概要: Mutual Information Regularization for Vertical Federated Learning
- arxiv url: http://arxiv.org/abs/2301.01142v1
- Date: Sun, 1 Jan 2023 02:03:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-04 14:57:59.743176
- Title: Mutual Information Regularization for Vertical Federated Learning
- Title(参考訳): 垂直連合学習のための相互情報正規化
- Authors: Tianyuan Zou, Yang Liu, Ya-Qin Zhang
- Abstract要約: Vertical Federated Learning (VFL)は、データプライバシと安全性を保護しながら協調学習を可能にするために、現実世界のアプリケーションで広く利用されている。
以前の研究によると、VFLのラベル(パッシブパーティ)を持たない当事者は、その当事者が所有する機密ラベル情報をラベル(アクティブパーティ)で推測したり、VFLに対するバックドアアタックを実行することができる。
本稿では,特徴とラベル,中間出力を含むプライベート生データ間の相互情報を制限し,モデルユーティリティとプライバシのトレードオフを改善するための汎用防衛手法を提案する。
- 参考スコア(独自算出の注目度): 6.458078197870505
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Vertical Federated Learning (VFL) is widely utilized in real-world
applications to enable collaborative learning while protecting data privacy and
safety. However, previous works show that parties without labels (passive
parties) in VFL can infer the sensitive label information owned by the party
with labels (active party) or execute backdoor attacks to VFL. Meanwhile,
active party can also infer sensitive feature information from passive party.
All these pose new privacy and security challenges to VFL systems. We propose a
new general defense method which limits the mutual information between private
raw data, including both features and labels, and intermediate outputs to
achieve a better trade-off between model utility and privacy. We term this
defense Mutual Information Regularization Defense (MID). We theoretically and
experimentally testify the effectiveness of our MID method in defending
existing attacks in VFL, including label inference attacks, backdoor attacks
and feature reconstruction attacks.
- Abstract(参考訳): Vertical Federated Learning (VFL)は、データプライバシと安全性を保護しながら協調学習を可能にするために、現実世界のアプリケーションで広く利用されている。
しかしながら、以前の研究は、VFLのラベル(パッシブパーティ)を持たない当事者が、その当事者が所有する機密ラベル情報をラベル(アクティブパーティ)で推測したり、VFLに対するバックドアアタックを実行することができることを示している。
一方、アクティブパーティは受動的パーティから機密機能情報を推測することもできる。
これらすべてが、vflシステムに新たなプライバシとセキュリティ上の課題をもたらします。
本稿では,特徴とラベル,中間出力を含むプライベート生データ間の相互情報を制限し,モデルユーティリティとプライバシのトレードオフを改善するための汎用防衛手法を提案する。
この防衛をMID(Multual Information Regularization Defense)と呼ぶ。
提案手法の有効性を理論的,実験的に検証し,ラベル推論攻撃,バックドア攻撃,特徴再構成攻撃を含む既存のVFL攻撃を防御する。
関連論文リスト
- Vertical Federated Learning for Effectiveness, Security, Applicability: A Survey [67.48187503803847]
Vertical Federated Learning(VFL)は、プライバシ保護のための分散学習パラダイムである。
近年の研究では、VFLの様々な課題に対処する有望な成果が示されている。
この調査は、最近の展開を体系的に概観する。
論文 参考訳(メタデータ) (2024-05-25T16:05:06Z) - KDk: A Defense Mechanism Against Label Inference Attacks in Vertical Federated Learning [2.765106384328772]
Vertical Federated Learning (VFL) のシナリオでは、サンプルのラベルは、ラベル所有者である集約サーバを除くすべてのパーティからプライベートに保持される。
最近の研究で、サーバからボトムモデルに返される勾配情報を利用することで、敵がプライベートラベルを推測できることが判明した。
我々は,KDkという,知識蒸留とk匿名を組み合わせて防御機構を提供する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-18T17:51:02Z) - Task-Agnostic Privacy-Preserving Representation Learning for Federated Learning Against Attribute Inference Attacks [21.83308540799076]
フェデレートラーニング(FL)は、生データを共有せずに、異なるデバイスからデータを協調的にトレーニングする特性のために、近年広く研究されている。
最近の研究によると、敵は依然としてデバイスのデータ、例えば収入、人種、性的指向などのセンシティブな属性に関する情報を推測することができる。
我々は,属性推論攻撃に対するFL(bf TAPPFL)のタスク依存型プライバシ保護プレゼンテーション学習手法を開発した。
論文 参考訳(メタデータ) (2023-12-12T05:17:34Z) - Practical and General Backdoor Attacks against Vertical Federated
Learning [3.587415228422117]
Federated Learning(FL)は、データのプライバシを公開することなく、複数の組織間でのデータコラボレーションを促進することを目的としている。
BadVFLは、ラベル情報なしで被害者モデルにバックドアトリガーを注入するための、新しく実用的なアプローチである。
BadVFLの攻撃成功率は93%を超え、毒殺率は1%に過ぎなかった。
論文 参考訳(メタデータ) (2023-06-19T07:30:01Z) - BadVFL: Backdoor Attacks in Vertical Federated Learning [22.71527711053385]
フェデレートラーニング(FL)は、複数のパーティがデータを共有することなく、機械学習モデルを協調的にトレーニングすることを可能にする。
本稿では,VFLのロバスト性,特にバックドアアタックに焦点をあてる。
VFLでは,ラベル推論とバックドアフェーズという2つのフェーズからなる第1種クリーンラベルバックドアアタックが提案されている。
論文 参考訳(メタデータ) (2023-04-18T09:22:32Z) - FairVFL: A Fair Vertical Federated Learning Framework with Contrastive
Adversarial Learning [102.92349569788028]
本稿では,VFLモデルの公平性を改善するために,FairVFL( Fair vertical federated learning framework)を提案する。
FairVFLの中核となる考え方は、分散化された機能フィールドに基づいたサンプルの統一的で公正な表現を、プライバシ保護の方法で学習することである。
ユーザのプライバシ保護のために,サーバ内の統一表現からプライベート情報を除去する対向学習手法を提案する。
論文 参考訳(メタデータ) (2022-06-07T11:43:32Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
フェデレートラーニング(FL)は、生データを共有することなく、AIモデルの協調トレーニングを可能にする。
モデル勾配からのディープニューラルネットワークの反転に関する最近の研究は、トレーニングデータの漏洩を防止するためのFLの安全性に関する懸念を提起した。
本研究では,本論文で提示されたこれらの攻撃が実際のFLユースケースでは実行不可能であることを示し,新たなベースライン攻撃を提供する。
論文 参考訳(メタデータ) (2022-02-14T18:33:12Z) - Attribute Inference Attack of Speech Emotion Recognition in Federated
Learning Settings [56.93025161787725]
Federated Learning(FL)は、クライアントをコーディネートして、ローカルデータを共有せずにモデルを協調的にトレーニングする分散機械学習パラダイムである。
本稿では,共有勾配やモデルパラメータからクライアントの機密属性情報を推測する属性推論攻撃フレームワークを提案する。
FLを用いて学習したSERシステムに対して,属性推論攻撃が達成可能であることを示す。
論文 参考訳(メタデータ) (2021-12-26T16:50:42Z) - Defending Label Inference and Backdoor Attacks in Vertical Federated
Learning [11.319694528089773]
共同学習では、好奇心が強いパリティは正直かもしれないが、推論攻撃を通じて他人の個人データを推測しようとしている。
本稿では,サンプルごとの勾配から,プライベートラベルを再構築可能であることを示す。
本稿では、オートエンコーダとエントロピー正規化に基づく、混乱型オートエンコーダ(CoAE)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-12-10T09:32:09Z) - Meta Federated Learning [57.52103907134841]
フェデレートラーニング(FL)は、時間的敵攻撃の訓練に弱い。
本稿では,メタフェデレーション学習(Meta Federated Learning, Meta-FL)を提案する。
論文 参考訳(メタデータ) (2021-02-10T16:48:32Z) - Privacy and Robustness in Federated Learning: Attacks and Defenses [74.62641494122988]
このトピックに関する最初の包括的な調査を実施します。
FLの概念の簡潔な紹介と、1脅威モデル、2堅牢性に対する中毒攻撃と防御、3プライバシーに対する推論攻撃と防御、というユニークな分類学を通じて、私たちはこの重要なトピックのアクセス可能なレビューを提供します。
論文 参考訳(メタデータ) (2020-12-07T12:11:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。