Rethinking Mobile Block for Efficient Attention-based Models
- URL: http://arxiv.org/abs/2301.01146v4
- Date: Mon, 14 Aug 2023 08:54:43 GMT
- Title: Rethinking Mobile Block for Efficient Attention-based Models
- Authors: Jiangning Zhang, Xiangtai Li, Jian Li, Liang Liu, Zhucun Xue, Boshen
Zhang, Zhengkai Jiang, Tianxin Huang, Yabiao Wang, and Chengjie Wang
- Abstract summary: This paper focuses on developing modern, efficient, lightweight models for dense predictions while trading off parameters, FLOPs, and performance.
Inverted Residual Block (IRB) serves as the infrastructure for lightweight CNNs, but no counterpart has been recognized by attention-based studies.
We extend CNN-based IRB to attention-based models and abstracting a one-residual Meta Mobile Block (MMB) for lightweight model design.
- Score: 60.0312591342016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper focuses on developing modern, efficient, lightweight models for
dense predictions while trading off parameters, FLOPs, and performance.
Inverted Residual Block (IRB) serves as the infrastructure for lightweight
CNNs, but no counterpart has been recognized by attention-based studies. This
work rethinks lightweight infrastructure from efficient IRB and effective
components of Transformer from a unified perspective, extending CNN-based IRB
to attention-based models and abstracting a one-residual Meta Mobile Block
(MMB) for lightweight model design. Following simple but effective design
criterion, we deduce a modern Inverted Residual Mobile Block (iRMB) and build a
ResNet-like Efficient MOdel (EMO) with only iRMB for down-stream tasks.
Extensive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks
demonstrate the superiority of our EMO over state-of-the-art methods, e.g.,
EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass equal-order
CNN-/Attention-based models, while trading-off the parameter, efficiency, and
accuracy well: running 2.8-4.0x faster than EdgeNeXt on iPhone14.
Related papers
- CMoE: Fast Carving of Mixture-of-Experts for Efficient LLM Inference [33.871080938643566]
Large language models (LLMs) achieve impressive performance by scaling model parameters, but this comes with significant inference overhead.
We propose CMoE, a novel framework to efficiently carve MoE models from dense models.
CMoE achieves remarkable performance through efficient expert grouping and lightweight adaptation.
arXiv Detail & Related papers (2025-02-06T14:05:30Z) - Building Efficient Lightweight CNN Models [0.0]
Convolutional Neural Networks (CNNs) are pivotal in image classification tasks due to their robust feature extraction capabilities.
This paper introduces a methodology to construct lightweight CNNs while maintaining competitive accuracy.
The proposed model achieved a state-of-the-art accuracy of 99% on the handwritten digit MNIST and 89% on fashion MNIST, with only 14,862 parameters and a model size of 0.17 MB.
arXiv Detail & Related papers (2025-01-26T14:39:01Z) - EMOv2: Pushing 5M Vision Model Frontier [92.21687467702972]
We set up the new frontier of the 5M magnitude lightweight model on various downstream tasks.
Our work rethinks the lightweight infrastructure of efficient IRB and practical components in Transformer.
Considering the imperceptible latency for mobile users when downloading models under 4G/5G bandwidth, we investigate the performance upper limit of lightweight models with a magnitude of 5M.
arXiv Detail & Related papers (2024-12-09T17:12:22Z) - LeYOLO, New Scalable and Efficient CNN Architecture for Object Detection [0.0]
We focus on design choices of neural network architectures for efficient object detection based on FLOP.
We propose several optimizations to enhance the efficiency of YOLO-based models.
This paper contributes to a new scaling paradigm for object detection and YOLO-centric models called LeYOLO.
arXiv Detail & Related papers (2024-06-20T12:08:24Z) - Efficient Modulation for Vision Networks [122.1051910402034]
We propose efficient modulation, a novel design for efficient vision networks.
We demonstrate that the modulation mechanism is particularly well suited for efficient networks.
Our network can accomplish better trade-offs between accuracy and efficiency.
arXiv Detail & Related papers (2024-03-29T03:48:35Z) - A-SDM: Accelerating Stable Diffusion through Redundancy Removal and
Performance Optimization [54.113083217869516]
In this work, we first explore the computational redundancy part of the network.
We then prune the redundancy blocks of the model and maintain the network performance.
Thirdly, we propose a global-regional interactive (GRI) attention to speed up the computationally intensive attention part.
arXiv Detail & Related papers (2023-12-24T15:37:47Z) - Faster Attention Is What You Need: A Fast Self-Attention Neural Network
Backbone Architecture for the Edge via Double-Condensing Attention Condensers [71.40595908386477]
We introduce a new faster attention condenser design called double-condensing attention condensers.
The resulting backbone (which we name AttendNeXt) achieves significantly higher inference throughput on an embedded ARM processor.
These promising results demonstrate that exploring different efficient architecture designs and self-attention mechanisms can lead to interesting new building blocks for TinyML applications.
arXiv Detail & Related papers (2022-08-15T02:47:33Z) - EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for
Mobile Vision Applications [68.35683849098105]
We introduce split depth-wise transpose attention (SDTA) encoder that splits input tensors into multiple channel groups.
Our EdgeNeXt model with 1.3M parameters achieves 71.2% top-1 accuracy on ImageNet-1K.
Our EdgeNeXt model with 5.6M parameters achieves 79.4% top-1 accuracy on ImageNet-1K.
arXiv Detail & Related papers (2022-06-21T17:59:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.