Building Efficient Lightweight CNN Models
- URL: http://arxiv.org/abs/2501.15547v1
- Date: Sun, 26 Jan 2025 14:39:01 GMT
- Title: Building Efficient Lightweight CNN Models
- Authors: Nathan Isong,
- Abstract summary: Convolutional Neural Networks (CNNs) are pivotal in image classification tasks due to their robust feature extraction capabilities.
This paper introduces a methodology to construct lightweight CNNs while maintaining competitive accuracy.
The proposed model achieved a state-of-the-art accuracy of 99% on the handwritten digit MNIST and 89% on fashion MNIST, with only 14,862 parameters and a model size of 0.17 MB.
- Score: 0.0
- License:
- Abstract: Convolutional Neural Networks (CNNs) are pivotal in image classification tasks due to their robust feature extraction capabilities. However, their high computational and memory requirements pose challenges for deployment in resource-constrained environments. This paper introduces a methodology to construct lightweight CNNs while maintaining competitive accuracy. The approach integrates two stages of training; dual-input-output model and transfer learning with progressive unfreezing. The dual-input-output model train on original and augmented datasets, enhancing robustness. Progressive unfreezing is applied to the unified model to optimize pre-learned features during fine-tuning, enabling faster convergence and improved model accuracy. The methodology was evaluated on three benchmark datasets; handwritten digit MNIST, fashion MNIST, and CIFAR-10. The proposed model achieved a state-of-the-art accuracy of 99% on the handwritten digit MNIST and 89% on fashion MNIST, with only 14,862 parameters and a model size of 0.17 MB. While performance on CIFAR-10 was comparatively lower (65% with less than 20,00 parameters), the results highlight the scalability of this method. The final model demonstrated fast inference times and low latency, making it suitable for real-time applications. Future directions include exploring advanced augmentation techniques, improving architectural scalability for complex datasets, and extending the methodology to tasks beyond classification. This research underscores the potential for creating efficient, scalable, and task-specific CNNs for diverse applications.
Related papers
- SHA-CNN: Scalable Hierarchical Aware Convolutional Neural Network for Edge AI [6.168286187549952]
This paper introduces a Hierarchical Aware Convolutional Neural Network (SHA-CNN) model architecture for Edge AI applications.
The proposed hierarchical CNN model is meticulously crafted to strike a balance between computational efficiency and accuracy.
The key innovation lies in the model's hierarchical awareness, enabling it to discern and prioritize relevant features at multiple levels of abstraction.
arXiv Detail & Related papers (2024-07-31T06:44:52Z) - A-SDM: Accelerating Stable Diffusion through Redundancy Removal and
Performance Optimization [54.113083217869516]
In this work, we first explore the computational redundancy part of the network.
We then prune the redundancy blocks of the model and maintain the network performance.
Thirdly, we propose a global-regional interactive (GRI) attention to speed up the computationally intensive attention part.
arXiv Detail & Related papers (2023-12-24T15:37:47Z) - Reusing Convolutional Neural Network Models through Modularization and
Composition [22.823870645316397]
We propose two modularization approaches named CNNSplitter and GradSplitter.
CNNSplitter decomposes a trained convolutional neural network (CNN) model into $N$ small reusable modules.
The resulting modules can be reused to patch existing CNN models or build new CNN models through composition.
arXiv Detail & Related papers (2023-11-08T03:18:49Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - Incremental Online Learning Algorithms Comparison for Gesture and Visual
Smart Sensors [68.8204255655161]
This paper compares four state-of-the-art algorithms in two real applications: gesture recognition based on accelerometer data and image classification.
Our results confirm these systems' reliability and the feasibility of deploying them in tiny-memory MCUs.
arXiv Detail & Related papers (2022-09-01T17:05:20Z) - Training Efficient CNNS: Tweaking the Nuts and Bolts of Neural Networks
for Lighter, Faster and Robust Models [0.0]
We demonstrate how an efficient deep convolution network can be built in a phased manner by sequentially reducing the number of training parameters.
We achieved a SOTA accuracy of 99.2% on MNIST data with just 1500 parameters and an accuracy of 86.01% with just over 140K parameters on the CIFAR-10 dataset.
arXiv Detail & Related papers (2022-05-23T13:51:06Z) - Real-time Human Detection Model for Edge Devices [0.0]
Convolutional Neural Networks (CNNs) have replaced traditional feature extraction and machine learning models in detection and classification tasks.
Lightweight CNN models have been recently introduced for real-time tasks.
This paper suggests a CNN-based lightweight model that can fit on a limited edge device such as Raspberry Pi.
arXiv Detail & Related papers (2021-11-20T18:42:17Z) - Accelerating Multi-Objective Neural Architecture Search by Random-Weight
Evaluation [24.44521525130034]
We introduce a new performance estimation metric named Random-Weight Evaluation (RWE) to quantify the quality of CNNs.
RWE only trains its last layer and leaves the remainders with randomly weights, which results in a single network evaluation in seconds.
Our proposed method obtains a set of efficient models with state-of-the-art performance in two real-world search spaces.
arXiv Detail & Related papers (2021-10-08T06:35:20Z) - Effective Model Sparsification by Scheduled Grow-and-Prune Methods [73.03533268740605]
We propose a novel scheduled grow-and-prune (GaP) methodology without pre-training the dense models.
Experiments have shown that such models can match or beat the quality of highly optimized dense models at 80% sparsity on a variety of tasks.
arXiv Detail & Related papers (2021-06-18T01:03:13Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - Modeling Token-level Uncertainty to Learn Unknown Concepts in SLU via
Calibrated Dirichlet Prior RNN [98.4713940310056]
One major task of spoken language understanding (SLU) in modern personal assistants is to extract semantic concepts from an utterance.
Recent research collected question and answer annotated data to learn what is unknown and should be asked.
We incorporate softmax-based slot filling neural architectures to model the sequence uncertainty without question supervision.
arXiv Detail & Related papers (2020-10-16T02:12:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.