Procedural Humans for Computer Vision
- URL: http://arxiv.org/abs/2301.01161v1
- Date: Tue, 3 Jan 2023 15:44:48 GMT
- Title: Procedural Humans for Computer Vision
- Authors: Charlie Hewitt, Tadas Baltru\v{s}aitis, Erroll Wood, Lohit Petikam,
Louis Florentin and Hanz Cuevas Velasquez
- Abstract summary: We build a parametric model of the face and body, including articulated hands, to generate realistic images of humans based on this body model.
We show that this can be extended to include the full body by building on the pipeline of Wood et al. to generate synthetic images of humans in their entirety.
- Score: 1.9550079119934403
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent work has shown the benefits of synthetic data for use in computer
vision, with applications ranging from autonomous driving to face landmark
detection and reconstruction. There are a number of benefits of using synthetic
data from privacy preservation and bias elimination to quality and feasibility
of annotation. Generating human-centered synthetic data is a particular
challenge in terms of realism and domain-gap, though recent work has shown that
effective machine learning models can be trained using synthetic face data
alone. We show that this can be extended to include the full body by building
on the pipeline of Wood et al. to generate synthetic images of humans in their
entirety, with ground-truth annotations for computer vision applications.
In this report we describe how we construct a parametric model of the face
and body, including articulated hands; our rendering pipeline to generate
realistic images of humans based on this body model; an approach for training
DNNs to regress a dense set of landmarks covering the entire body; and a method
for fitting our body model to dense landmarks predicted from multiple views.
Related papers
- Unveiling Synthetic Faces: How Synthetic Datasets Can Expose Real Identities [22.8742248559748]
We show that in 6 state-of-the-art synthetic face recognition datasets, several samples from the original real dataset are leaked.
This paper is the first work which shows the leakage from training data of generator models into the generated synthetic face recognition datasets.
arXiv Detail & Related papers (2024-10-31T15:17:14Z) - SDFR: Synthetic Data for Face Recognition Competition [51.9134406629509]
Large-scale face recognition datasets are collected by crawling the Internet and without individuals' consent, raising legal, ethical, and privacy concerns.
Recently several works proposed generating synthetic face recognition datasets to mitigate concerns in web-crawled face recognition datasets.
This paper presents the summary of the Synthetic Data for Face Recognition (SDFR) Competition held in conjunction with the 18th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2024)
The SDFR competition was split into two tasks, allowing participants to train face recognition systems using new synthetic datasets and/or existing ones.
arXiv Detail & Related papers (2024-04-06T10:30:31Z) - SynthDistill: Face Recognition with Knowledge Distillation from
Synthetic Data [8.026313049094146]
State-of-the-art face recognition networks are often computationally expensive and cannot be used for mobile applications.
We propose a new framework to train lightweight face recognition models by distilling the knowledge of a pretrained teacher face recognition model using synthetic data.
We use synthetic face images without identity labels, mitigating the problems in the intra-class variation generation of synthetic datasets.
arXiv Detail & Related papers (2023-08-28T19:15:27Z) - ContraNeRF: Generalizable Neural Radiance Fields for Synthetic-to-real
Novel View Synthesis via Contrastive Learning [102.46382882098847]
We first investigate the effects of synthetic data in synthetic-to-real novel view synthesis.
We propose to introduce geometry-aware contrastive learning to learn multi-view consistent features with geometric constraints.
Our method can render images with higher quality and better fine-grained details, outperforming existing generalizable novel view synthesis methods in terms of PSNR, SSIM, and LPIPS.
arXiv Detail & Related papers (2023-03-20T12:06:14Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
We study whether and how synthetic images generated from state-of-the-art text-to-image generation models can be used for image recognition tasks.
We showcase the powerfulness and shortcomings of synthetic data from existing generative models, and propose strategies for better applying synthetic data for recognition tasks.
arXiv Detail & Related papers (2022-10-14T06:54:24Z) - Hands-Up: Leveraging Synthetic Data for Hands-On-Wheel Detection [0.38233569758620045]
This work demonstrates the use of synthetic photo-realistic in-cabin data to train a Driver Monitoring System.
We show how performing error analysis and generating the missing edge-cases in our platform boosts performance.
This showcases the ability of human-centric synthetic data to generalize well to the real world.
arXiv Detail & Related papers (2022-05-31T23:34:12Z) - LatentHuman: Shape-and-Pose Disentangled Latent Representation for Human
Bodies [78.17425779503047]
We propose a novel neural implicit representation for the human body.
It is fully differentiable and optimizable with disentangled shape and pose latent spaces.
Our model can be trained and fine-tuned directly on non-watertight raw data with well-designed losses.
arXiv Detail & Related papers (2021-11-30T04:10:57Z) - Fake It Till You Make It: Face analysis in the wild using synthetic data
alone [9.081019005437309]
We show that it is possible to perform face-related computer vision in the wild using synthetic data alone.
We describe how to combine a procedurally-generated 3D face model with a comprehensive library of hand-crafted assets to render training images with unprecedented realism.
arXiv Detail & Related papers (2021-09-30T13:07:04Z) - Learning to Segment Human Body Parts with Synthetically Trained Deep
Convolutional Networks [58.0240970093372]
This paper presents a new framework for human body part segmentation based on Deep Convolutional Neural Networks trained using only synthetic data.
The proposed approach achieves cutting-edge results without the need of training the models with real annotated data of human body parts.
arXiv Detail & Related papers (2021-02-02T12:26:50Z) - Combining Implicit Function Learning and Parametric Models for 3D Human
Reconstruction [123.62341095156611]
Implicit functions represented as deep learning approximations are powerful for reconstructing 3D surfaces.
Such features are essential in building flexible models for both computer graphics and computer vision.
We present methodology that combines detail-rich implicit functions and parametric representations.
arXiv Detail & Related papers (2020-07-22T13:46:14Z) - A high fidelity synthetic face framework for computer vision [10.679578971210912]
We propose synthesizing facial data, including ground truth annotations, at the consistency and scale possible through use of synthetic data.
We use a parametric face model together with hand crafted assets which enable us to generate training data with unprecedented quality and diversity.
arXiv Detail & Related papers (2020-07-16T14:40:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.