Can Decoherence Solve the Measurement Problem?
- URL: http://arxiv.org/abs/2301.01207v1
- Date: Mon, 5 Dec 2022 09:32:35 GMT
- Title: Can Decoherence Solve the Measurement Problem?
- Authors: Mani L. Bhaumik
- Abstract summary: The quantum decoherence program has become more attractive in providing an acceptable solution for the long-standing quantum measurement problem.
Recent experimental observations of the effect of the ubiquitous quantum vacuum fluctuations in destroying quantum entanglement appears to provide a solution.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum decoherence program has become more attractive in providing an
acceptable solution for the long-standing quantum measurement problem.
Decoherence by quantum entanglement happens very quickly to entangle the
quantum system with the environment including the detector. But in the final
stage of measurement, acquiring the unentangled pointer states poses some
problems. Recent experimental observations of the effect of the ubiquitous
quantum vacuum fluctuations in destroying quantum entanglement appears to
provide a solution.
Related papers
- A Method Using Photon Collapse and Entanglement to Transmit Information [13.438312709072457]
We find that measurements cause quantum wave functions to collapse.
By studying the overlooked phenomena of quantum wave function collapse, we find that quantum eigenstate sets may be artificially controlled.
We propose an innovative method for direct information transmission utilizing photon wave function collapse and entanglement.
arXiv Detail & Related papers (2024-06-27T13:22:21Z) - Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
We provide an introduction to Quantum Information Processing, focusing on a promising setup for its implementation.
We introduce the basic tools to understand and design quantum algorithms, always referring to their actual realization on a molecular spin architecture.
We present some examples of quantum algorithms proposed and implemented on a molecular spin qudit hardware.
arXiv Detail & Related papers (2024-05-31T16:43:20Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Randomly Monitored Quantum Codes [8.557392136621894]
Recent studies have shown that quantum measurement itself can induce novel quantum phenomena.
One example is a monitored random circuit, which can generate long-range entanglement faster than a random unitary circuit.
In particular, we demonstrate that for a large class of quantum error-correcitng codes, it is impossible to destroy the encoded information through random single-qubit Pauli measurements.
arXiv Detail & Related papers (2024-01-31T19:53:06Z) - System-environment dynamics of GHZ-like states in noninertial frames [14.401323451758975]
Quantum coherence, quantum entanglement and quantum nonlocality are important resources in quantum information precessing.
We study the dynamical evolution of the three-qubit GHZ-like states in non-inertial frame when one and/or two qubits undergo decoherence.
arXiv Detail & Related papers (2022-12-30T03:36:48Z) - Finite-round quantum error correction on symmetric quantum sensors [8.339831319589134]
Heisenberg limit provides a quadratic improvement over the standard quantum limit.
It remains elusive because of the inevitable presence of noise decohering quantum sensors.
We side-step this no-go result by using an optimal finite number of rounds of quantum error correction.
arXiv Detail & Related papers (2022-12-12T23:41:51Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Universal quantum computation and quantum error correction with
ultracold atomic mixtures [47.187609203210705]
We propose a mixture of two ultracold atomic species as a platform for universal quantum computation with long-range entangling gates.
One atomic species realizes localized collective spins of tunable length, which form the fundamental unit of information.
We discuss a finite-dimensional version of the Gottesman-Kitaev-Preskill code to protect quantum information encoded in the collective spins.
arXiv Detail & Related papers (2020-10-29T20:17:14Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Continuous measurements for control of superconducting quantum circuits [0.0]
We introduce the concept of quantum feedback in the context of circuit QED.
We discuss several experiments and see how they elucidate the concepts of continuous measurements and feedback.
We conclude with an overview of coherent feedback, with application to fault-tolerant error correction.
arXiv Detail & Related papers (2020-09-15T18:00:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.