Limits of single-photon storage in a single $\Lambda$-type atom
- URL: http://arxiv.org/abs/2301.01559v3
- Date: Tue, 13 Jun 2023 14:22:19 GMT
- Title: Limits of single-photon storage in a single $\Lambda$-type atom
- Authors: Zhi-Lei Zhang and Li-Ping Yang
- Abstract summary: We show that a control field can accelerate the storage process without degrading efficiency too much.
For a single-photon pulse propagating in a regular one-dimensional waveguide, the storage efficiency has an upper limit of $50 %$.
- Score: 8.19841678851784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We theoretically investigate the limits of single-photon storage in a single
$\Lambda$-type atom, specifically the trade-off between storage efficiency and
storage speed. We show that a control field can accelerate the storage process
without degrading efficiency too much. However, the storage speed is ultimately
limited by the total decay rate of the involved excited state. For a
single-photon pulse propagating in a regular one-dimensional waveguide, the
storage efficiency has an upper limit of $50 \%$. Perfect single-photon storage
can be achieved by using a chiral waveguide or the Sagnac interferometry. By
comparing the storage efficiencies of Fock-state and coherent-state pulses, we
reveal the influence of quantum statistics of light on photon storage at the
single-photon level.
Related papers
- Efficient cavity-assisted storage of photonic qubits in a solid-state quantum memory [37.69303106863453]
We report on the high-efficiency storage and retrieval of weak coherent optical pulses and photonic qubits in a cavity solid-state quantum memory.
We store weak coherent pulses at the single photon level with up to 62% efficiency for a pre-determined storage time of 2 $mu$s.
We then store weak coherent time-bin qubits with (51+-2)% efficiency and a measurement-device limited fidelity over (94.8+-1.4)% for the retrieved qubits.
arXiv Detail & Related papers (2023-07-07T10:55:09Z) - Dispersionless subradiant photon storage in one-dimensional emitter
chains [0.0]
We provide conditions for optimal absorption, long-lived and dispersionless storage, and release of a single photon in a sub-wavelength one-dimensional lattice of two-level emitters.
The first is based on the uncovering of approximate flat sections in the single-photon spectrum, such as a single photon can be stored as a wave packet with effective zero group velocity.
For the second scheme we exploit the angular dependence of the interactions induced between the emitters and mediated via exchange of virtual photons, which on a ring gives rise to an effective trapping potential for the photon.
arXiv Detail & Related papers (2023-03-23T09:21:37Z) - Field-deployable Quantum Memory for Quantum Networking [62.72060057360206]
We present a quantum memory engineered to meet real-world deployment and scaling challenges.
The memory technology utilizes a warm rubidium vapor as the storage medium, and operates at room temperature.
We demonstrate performance specifications of high-fidelity retrieval (95%) and low operation error $(10-2)$ at a storage time of 160 $mu s$ for single-photon level quantum memory operations.
arXiv Detail & Related papers (2022-05-26T00:33:13Z) - Efficient, ever-ready quantum memory at room temperature for single
photons [0.4047301375093173]
Quantum memories will be an essential building block of large scale networked quantum systems.
Memory efficiencies above 50% are required to be operating above the quantum no-cloning limit.
In this paper we explore the combination of an ultralow spectral bandwidth source of single photons from cavity-enhanced spontaneous parametric down-conversion with a gas-ensemble atomic memory.
arXiv Detail & Related papers (2022-03-23T00:34:18Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Single photon emission from individual nanophotonic-integrated colloidal
quantum dots [45.82374977939355]
Solution processible colloidal quantum dots hold great promise for realizing single-photon sources embedded into scalable quantum technology platforms.
We report on integrating individual colloidal core-shell quantum dots into a nanophotonic network that allows for excitation and efficient collection of single-photons via separate waveguide channels.
arXiv Detail & Related papers (2021-04-23T22:14:17Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z) - Efficient quantum memory for heralded single photons generated by
cavity-enhanced spontaneous parametric downconversion [0.0]
We interface a spontaneous parametric down conversion (SPDC) crystal and a cold atomic ensemble.
We demonstrate a highly efficient quantum memory through polarization-encoded single-photon qubits.
The results pave the way toward large-scale quantum network.
arXiv Detail & Related papers (2020-11-30T16:19:39Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - A bright and fast source of coherent single photons [46.25143811066789]
A single photon source is a key enabling technology in device-independent quantum communication.
We report a single photon source with an especially high system efficiency.
arXiv Detail & Related papers (2020-07-24T17:08:46Z) - Efficient quantum memory for single photon polarization qubits [0.21670084965090575]
A quantum memory is a key interface for realizing long-distance quantum communication and large-scale quantum computation.
Here, we report the demonstration of a quantum memory for single-photon polarization qubits with an efficiency of >85% and a fidelity of >99 %.
For the single-channel quantum memory, the optimized efficiency for storing and retrieving single-photon temporal waveforms can be as high as 90.6 %.
arXiv Detail & Related papers (2020-04-07T04:39:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.