Field-deployable Quantum Memory for Quantum Networking
- URL: http://arxiv.org/abs/2205.13091v2
- Date: Thu, 8 Sep 2022 16:16:35 GMT
- Title: Field-deployable Quantum Memory for Quantum Networking
- Authors: Yang Wang, Alexander N. Craddock, Rourke Sekelsky, Mael Flament, Mehdi
Namazi
- Abstract summary: We present a quantum memory engineered to meet real-world deployment and scaling challenges.
The memory technology utilizes a warm rubidium vapor as the storage medium, and operates at room temperature.
We demonstrate performance specifications of high-fidelity retrieval (95%) and low operation error $(10-2)$ at a storage time of 160 $mu s$ for single-photon level quantum memory operations.
- Score: 62.72060057360206
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-performance quantum memories are an essential component for regulating
temporal events in quantum networks. As a component in quantum-repeaters, they
have the potential to support the distribution of entanglement beyond the
physical limitations of fiber loss. This will enable key applications such as
quantum key distribution, network-enhanced quantum sensing, and distributed
quantum computing. Here, we present a quantum memory engineered to meet
real-world deployment and scaling challenges. The memory technology utilizes a
warm rubidium vapor as the storage medium, and operates at room temperature,
without the need for vacuum- and/or cryogenic- support. We demonstrate
performance specifications of high-fidelity retrieval (95\%) and low operation
error $(10^{-2})$ at a storage time of 160 $\mu s$ for single-photon level
quantum memory operations. We further show a substantially improved storage
time (with classical-level light) of up to 1 ms by suppressing atomic
diffusions. The device is housed in an enclosure with a standard 2U rackmount
form factor, and can robustly operate on a day scale in a noisy environment.
This result marks an important step toward implementing quantum networks in the
field.
Related papers
- Progress towards efficient 4-level photon echo memories [0.0]
We show an efficient (up to 80%) spin-storage quantum memory in Er:YSO.
We demonstrate the storage of 70 temporal modes, with a write time of 150 us, and a storage time of 25 us.
Such a device would have applications in quantum networking and measurement-based quantum computing.
arXiv Detail & Related papers (2024-09-19T06:49:24Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum Memory: A Missing Piece in Quantum Computing Units [23.256454991183702]
We provide a full design stack view of quantum memory devices.
We review two types of quantum memory devices: random access quantum memory (RAQM) and quantum random access memory (QRAM)
Building on top of these devices, quantum memory units in the computing architecture, including building a quantum memory unit, quantum cache, quantum buffer, and using QRAM for the quantum input-output module, are discussed.
arXiv Detail & Related papers (2023-09-25T18:00:08Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - On-Demand Storage and Retrieval of Microwave Photons Using a
Superconducting Multiresonator Quantum Memory [8.02214511485348]
A quantum memory that can store quantum states faithfully and retrieve them on demand has wide applications in quantum information science.
We implement a superconducting multi-resonator quantum memory composed of a set of frequency-tunable coplanar transmission line (CPW) resonators.
We demonstrate on-demand storage and retrieval of a time-bin flying qubit.
arXiv Detail & Related papers (2021-11-10T09:38:09Z) - Multiplexed telecom-band quantum networking with atom arrays in optical
cavities [0.3499870393443268]
We propose a platform for quantum processors comprising neutral atom arrays with telecom-band photons in a multiplexed network architecture.
The use of a large atom array instead of a single atom mitigates the deleterious effects of two-way communication and improves the entanglement rate between two nodes by nearly two orders of magnitude.
arXiv Detail & Related papers (2021-07-09T15:05:57Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - On-demand quantum storage of photonic qubits in an on-chip waveguide [1.545577144935917]
Photonic quantum memory is the core element in quantum information processing (QIP)
Here we report the on-demand storage of time-bin qubits in an on-chip waveguide memory on the surface of a $151$Eu$3+$:Y$$$SiO$_5$ crystal.
A qubit storage fidelity of $99.3%pm0.2%$ is obtained with a input of 0.5 photons per pulse, far beyond the highest fidelity achievable using the classical measure-and-prepare strategy.
arXiv Detail & Related papers (2020-09-03T16:56:35Z) - A Frequency-Multiplexed Coherent Electro-Optic Memory in Rare Earth
Doped Nanoparticles [94.37521840642141]
Quantum memories for light are essential components in quantum technologies like long-distance quantum communication and distributed quantum computing.
Recent studies have shown that long optical and spin coherence lifetimes can be observed in rare earth doped nanoparticles.
We report on coherent light storage in Eu$3+$:Y$$O$_3$ nanoparticles using the Stark Echo Modulation Memory (SEMM) quantum protocol.
arXiv Detail & Related papers (2020-06-17T13:25:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.