Learning-based MPC from Big Data Using Reinforcement Learning
- URL: http://arxiv.org/abs/2301.01667v1
- Date: Wed, 4 Jan 2023 15:39:34 GMT
- Title: Learning-based MPC from Big Data Using Reinforcement Learning
- Authors: Shambhuraj Sawant, Akhil S Anand, Dirk Reinhardt, Sebastien Gros
- Abstract summary: This paper presents an approach for learning Model Predictive Control (MPC) schemes directly from data using Reinforcement Learning (RL) methods.
We propose to tackle this issue by using tools from RL to learn a parameterized MPC scheme directly from data in an offline fashion.
Our approach derives an MPC scheme without having to solve it over the collected dataset, thereby eliminating the computational complexity of existing techniques for big data.
- Score: 1.3124513975412255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an approach for learning Model Predictive Control (MPC)
schemes directly from data using Reinforcement Learning (RL) methods. The
state-of-the-art learning methods use RL to improve the performance of
parameterized MPC schemes. However, these learning algorithms are often
gradient-based methods that require frequent evaluations of computationally
expensive MPC schemes, thereby restricting their use on big datasets. We
propose to tackle this issue by using tools from RL to learn a parameterized
MPC scheme directly from data in an offline fashion. Our approach derives an
MPC scheme without having to solve it over the collected dataset, thereby
eliminating the computational complexity of existing techniques for big data.
We evaluate the proposed method on three simulated experiments of varying
complexity.
Related papers
- Heuristic Algorithm-based Action Masking Reinforcement Learning (HAAM-RL) with Ensemble Inference Method [0.0]
This paper presents a novel reinforcement learning approach called HAAMRL (Heuristic ensemble-based Action Masking Reinforcement Learning)
The proposed approach exhibits superior performance and capability generalization, indicating superior effectiveness in optimizing complex manufacturing processes.
arXiv Detail & Related papers (2024-03-21T03:42:39Z) - Decomposing Control Lyapunov Functions for Efficient Reinforcement Learning [10.117626902557927]
Current Reinforcement Learning (RL) methods require large amounts of data to learn a specific task, leading to unreasonable costs when deploying the agent to collect data in real-world applications.
In this paper, we build from existing work that reshapes the reward function in RL by introducing a Control Lyapunov Function (CLF) to reduce the sample complexity.
We show that our method finds a policy to successfully land a quadcopter in less than half the amount of real-world data required by the state-of-the-art Soft-Actor Critic algorithm.
arXiv Detail & Related papers (2024-03-18T19:51:17Z) - Model Predictive Control via On-Policy Imitation Learning [28.96122879515294]
We develop new sample complexity results and performance guarantees for data-driven Model Predictive Control.
Our algorithm uses the structure of constrained linear MPC, and our analysis uses the properties of the explicit MPC solution to theoretically bound the number of online MPC trajectories needed to achieve optimal performance.
arXiv Detail & Related papers (2022-10-17T16:06:06Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Learning Dexterous Manipulation from Suboptimal Experts [69.8017067648129]
Relative Entropy Q-Learning (REQ) is a simple policy algorithm that combines ideas from successful offline and conventional RL algorithms.
We show how REQ is also effective for general off-policy RL, offline RL, and RL from demonstrations.
arXiv Detail & Related papers (2020-10-16T18:48:49Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
Machine learning can provide deep insights into data, allowing machines to make high-quality predictions.
Most sophisticated machine learning approaches suffer from huge time costs when operating on large-scale data.
Large-scale Machine Learning aims to learn patterns from big data with comparable performance efficiently.
arXiv Detail & Related papers (2020-08-10T06:07:52Z) - An Online Method for A Class of Distributionally Robust Optimization
with Non-Convex Objectives [54.29001037565384]
We propose a practical online method for solving a class of online distributionally robust optimization (DRO) problems.
Our studies demonstrate important applications in machine learning for improving the robustness of networks.
arXiv Detail & Related papers (2020-06-17T20:19:25Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.