Sample-Efficient Reinforcement Learning of Koopman eNMPC
- URL: http://arxiv.org/abs/2503.18787v1
- Date: Mon, 24 Mar 2025 15:35:16 GMT
- Title: Sample-Efficient Reinforcement Learning of Koopman eNMPC
- Authors: Daniel Mayfrank, Mehmet Velioglu, Alexander Mitsos, Manuel Dahmen,
- Abstract summary: Reinforcement learning can be used to tune data-driven (economic) nonlinear model predictive controllers ((e)NMPCs) for optimal performance in a specific control task.<n>We combine a model-based RL algorithm with our published method that turns Koopman (e)NMPCs into automatically differentiable policies.
- Score: 42.72938925647165
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning (RL) can be used to tune data-driven (economic) nonlinear model predictive controllers ((e)NMPCs) for optimal performance in a specific control task by optimizing the dynamic model or parameters in the policy's objective function or constraints, such as state bounds. However, the sample efficiency of RL is crucial, and to improve it, we combine a model-based RL algorithm with our published method that turns Koopman (e)NMPCs into automatically differentiable policies. We apply our approach to an eNMPC case study of a continuous stirred-tank reactor (CSTR) model from the literature. The approach outperforms benchmark methods, i.e., data-driven eNMPCs using models based on system identification without further RL tuning of the resulting policy, and neural network controllers trained with model-based RL, by achieving superior control performance and higher sample efficiency. Furthermore, utilizing partial prior knowledge about the system dynamics via physics-informed learning further increases sample efficiency.
Related papers
- Traffic expertise meets residual RL: Knowledge-informed model-based residual reinforcement learning for CAV trajectory control [1.5361702135159845]
This paper introduces a knowledge-informed model-based residual reinforcement learning framework.
It integrates traffic expert knowledge into a virtual environment model, employing the Intelligent Driver Model (IDM) for basic dynamics and neural networks for residual dynamics.
We propose a novel strategy that combines traditional control methods with residual RL, facilitating efficient learning and policy optimization without the need to learn from scratch.
arXiv Detail & Related papers (2024-08-30T16:16:57Z) - Task-optimal data-driven surrogate models for eNMPC via differentiable simulation and optimization [42.72938925647165]
We present a method for end-to-end learning of Koopman surrogate models for optimal performance in a specific control task.<n>We evaluate the performance of our method by comparing it to that of other training algorithms on an existing economic nonlinear model predictive control (eNMPC) case study.
arXiv Detail & Related papers (2024-03-21T14:28:43Z) - Data-Efficient Task Generalization via Probabilistic Model-based Meta
Reinforcement Learning [58.575939354953526]
PACOH-RL is a novel model-based Meta-Reinforcement Learning (Meta-RL) algorithm designed to efficiently adapt control policies to changing dynamics.
Existing Meta-RL methods require abundant meta-learning data, limiting their applicability in settings such as robotics.
Our experiment results demonstrate that PACOH-RL outperforms model-based RL and model-based Meta-RL baselines in adapting to new dynamic conditions.
arXiv Detail & Related papers (2023-11-13T18:51:57Z) - End-to-End Reinforcement Learning of Koopman Models for Economic Nonlinear Model Predictive Control [45.84205238554709]
We present a method for reinforcement learning of Koopman surrogate models for optimal performance as part of (e)NMPC.
We show that the end-to-end trained models outperform those trained using system identification in (e)NMPC.
arXiv Detail & Related papers (2023-08-03T10:21:53Z) - Model Predictive Control via On-Policy Imitation Learning [28.96122879515294]
We develop new sample complexity results and performance guarantees for data-driven Model Predictive Control.
Our algorithm uses the structure of constrained linear MPC, and our analysis uses the properties of the explicit MPC solution to theoretically bound the number of online MPC trajectories needed to achieve optimal performance.
arXiv Detail & Related papers (2022-10-17T16:06:06Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - On Effective Scheduling of Model-based Reinforcement Learning [53.027698625496015]
We propose a framework named AutoMBPO to automatically schedule the real data ratio.
In this paper, we first theoretically analyze the role of real data in policy training, which suggests that gradually increasing the ratio of real data yields better performance.
arXiv Detail & Related papers (2021-11-16T15:24:59Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.