A Survey on Deep Industrial Transfer Learning in Fault Prognostics
- URL: http://arxiv.org/abs/2301.01705v1
- Date: Wed, 4 Jan 2023 17:01:27 GMT
- Title: A Survey on Deep Industrial Transfer Learning in Fault Prognostics
- Authors: Benjamin Maschler
- Abstract summary: This paper aims at establishing best practices for future research in this field.
It is shown that the field is lacking common benchmarks to robustly compare results and facilitate scientific progress.
The data sets utilized in these publications are surveyed as well in order to identify suitable candidates for such benchmark scenarios.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to its probabilistic nature, fault prognostics is a prime example of a
use case for deep learning utilizing big data. However, the low availability of
such data sets combined with the high effort of fitting, parameterizing and
evaluating complex learning algorithms to the heterogenous and dynamic settings
typical for industrial applications oftentimes prevents the practical
application of this approach. Automatic adaptation to new or dynamically
changing fault prognostics scenarios can be achieved using transfer learning or
continual learning methods. In this paper, a first survey of such approaches is
carried out, aiming at establishing best practices for future research in this
field. It is shown that the field is lacking common benchmarks to robustly
compare results and facilitate scientific progress. Therefore, the data sets
utilized in these publications are surveyed as well in order to identify
suitable candidates for such benchmark scenarios.
Related papers
- A step towards the integration of machine learning and small area
estimation [0.0]
We propose a predictor supported by machine learning algorithms which can be used to predict any population or subpopulation characteristics.
We study only small departures from the assumed model, to show that our proposal is a good alternative in this case as well.
What is more, we propose the method of the accuracy estimation of machine learning predictors, giving the possibility of the accuracy comparison with classic methods.
arXiv Detail & Related papers (2024-02-12T09:43:17Z) - Online Performance Estimation with Unlabeled Data: A Bayesian Application of the Hui-Walter Paradigm [0.0]
We adapt the Hui-Walter paradigm, a method traditionally applied in epidemiology and medicine, to the field of machine learning.
We estimate key performance metrics such as false positive rate, false negative rate, and priors in scenarios where no ground truth is available.
We extend this paradigm for handling online data, opening up new possibilities for dynamic data environments.
arXiv Detail & Related papers (2024-01-17T17:46:10Z) - On the Universal Adversarial Perturbations for Efficient Data-free
Adversarial Detection [55.73320979733527]
We propose a data-agnostic adversarial detection framework, which induces different responses between normal and adversarial samples to UAPs.
Experimental results show that our method achieves competitive detection performance on various text classification tasks.
arXiv Detail & Related papers (2023-06-27T02:54:07Z) - In Search of Insights, Not Magic Bullets: Towards Demystification of the
Model Selection Dilemma in Heterogeneous Treatment Effect Estimation [92.51773744318119]
This paper empirically investigates the strengths and weaknesses of different model selection criteria.
We highlight that there is a complex interplay between selection strategies, candidate estimators and the data used for comparing them.
arXiv Detail & Related papers (2023-02-06T16:55:37Z) - Benchmarking common uncertainty estimation methods with
histopathological images under domain shift and label noise [62.997667081978825]
In high-risk environments, deep learning models need to be able to judge their uncertainty and reject inputs when there is a significant chance of misclassification.
We conduct a rigorous evaluation of the most commonly used uncertainty and robustness methods for the classification of Whole Slide Images.
We observe that ensembles of methods generally lead to better uncertainty estimates as well as an increased robustness towards domain shifts and label noise.
arXiv Detail & Related papers (2023-01-03T11:34:36Z) - A Data-Centric AI Paradigm Based on Application-Driven Fine-grained
Dataset Design [2.2223262422197907]
We propose a novel paradigm for fine-grained design of datasets, driven by industrial applications.
We flexibly select positive and negative sample sets according to the essential features of the data and application requirements.
Compared with the traditional data design methods, our method achieves better results and effectively reduces false alarm.
arXiv Detail & Related papers (2022-09-20T03:56:53Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Toward Learning Robust and Invariant Representations with Alignment
Regularization and Data Augmentation [76.85274970052762]
This paper is motivated by a proliferation of options of alignment regularizations.
We evaluate the performances of several popular design choices along the dimensions of robustness and invariance.
We also formally analyze the behavior of alignment regularization to complement our empirical study under assumptions we consider realistic.
arXiv Detail & Related papers (2022-06-04T04:29:19Z) - An Effective Baseline for Robustness to Distributional Shift [5.627346969563955]
Refraining from confidently predicting when faced with categories of inputs different from those seen during training is an important requirement for the safe deployment of deep learning systems.
We present a simple, but highly effective approach to deal with out-of-distribution detection that uses the principle of abstention.
arXiv Detail & Related papers (2021-05-15T00:46:11Z) - Just Label What You Need: Fine-Grained Active Selection for Perception
and Prediction through Partially Labeled Scenes [78.23907801786827]
We introduce generalizations that ensure that our approach is both cost-aware and allows for fine-grained selection of examples through partially labeled scenes.
Our experiments on a real-world, large-scale self-driving dataset suggest that fine-grained selection can improve the performance across perception, prediction, and downstream planning tasks.
arXiv Detail & Related papers (2021-04-08T17:57:41Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
Deep predictive models rely on human supervision in the form of labeled training data.
We propose Ask-n-Learn, an active learning approach based on gradient embeddings obtained using the pesudo-labels estimated in each of the algorithm.
arXiv Detail & Related papers (2020-09-30T05:19:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.