Online Performance Estimation with Unlabeled Data: A Bayesian Application of the Hui-Walter Paradigm
- URL: http://arxiv.org/abs/2401.09376v2
- Date: Fri, 11 Oct 2024 13:54:48 GMT
- Title: Online Performance Estimation with Unlabeled Data: A Bayesian Application of the Hui-Walter Paradigm
- Authors: Kevin Slote, Elaine Lee,
- Abstract summary: We adapt the Hui-Walter paradigm, a method traditionally applied in epidemiology and medicine, to the field of machine learning.
We estimate key performance metrics such as false positive rate, false negative rate, and priors in scenarios where no ground truth is available.
We extend this paradigm for handling online data, opening up new possibilities for dynamic data environments.
- Score: 0.0
- License:
- Abstract: In the industrial practice of machine learning and statistical modeling, practitioners often work under the assumption of accessible, static, labeled data for evaluation and training. However, this assumption often deviates from reality, where data may be private, encrypted, difficult-to-measure, or unlabeled. In this paper, we bridge this gap by adapting the Hui-Walter paradigm, a method traditionally applied in epidemiology and medicine, to the field of machine learning. This approach enables us to estimate key performance metrics such as false positive rate, false negative rate, and priors in scenarios where no ground truth is available. We further extend this paradigm for handling online data, opening up new possibilities for dynamic data environments. Our methodology involves partitioning data into latent classes to simulate multiple data populations (if natural populations are unavailable) and independently training models to replicate multiple tests. By cross-tabulating binary outcomes across multiple categorizers and multiple populations, we are able to estimate unknown parameters through Gibbs sampling, eliminating the need for ground-truth or labeled data. This paper showcases the potential of our methodology to transform machine learning practices by allowing for accurate model assessment under dynamic and uncertain data conditions.
Related papers
- Towards a Theoretical Understanding of Memorization in Diffusion Models [76.85077961718875]
Diffusion probabilistic models (DPMs) are being employed as mainstream models for Generative Artificial Intelligence (GenAI)
We provide a theoretical understanding of memorization in both conditional and unconditional DPMs under the assumption of model convergence.
We propose a novel data extraction method named textbfSurrogate condItional Data Extraction (SIDE) that leverages a time-dependent classifier trained on the generated data as a surrogate condition to extract training data from unconditional DPMs.
arXiv Detail & Related papers (2024-10-03T13:17:06Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
Consider making a prediction over new test data without any opportunity to learn from a training set of labelled data.
Give access to a set of expert models and their predictions alongside some limited information about the dataset used to train them.
arXiv Detail & Related papers (2022-10-11T10:20:31Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - A Data-Driven Method for Automated Data Superposition with Applications
in Soft Matter Science [0.0]
We develop a data-driven, non-parametric method for superposing experimental data with arbitrary coordinate transformations.
Our method produces interpretable data-driven models that may inform applications such as materials classification, design, and discovery.
arXiv Detail & Related papers (2022-04-20T14:58:04Z) - BERT WEAVER: Using WEight AVERaging to enable lifelong learning for
transformer-based models in biomedical semantic search engines [49.75878234192369]
We present WEAVER, a simple, yet efficient post-processing method that infuses old knowledge into the new model.
We show that applying WEAVER in a sequential manner results in similar word embedding distributions as doing a combined training on all data at once.
arXiv Detail & Related papers (2022-02-21T10:34:41Z) - Managing dataset shift by adversarial validation for credit scoring [5.560471251954645]
The inconsistency between the distribution of training data and the data that actually needs to be predicted is likely to cause poor model performance.
We propose a method based on adversarial validation to alleviate the dataset shift problem in credit scoring scenarios.
arXiv Detail & Related papers (2021-12-19T07:07:15Z) - Evaluating Predictive Uncertainty and Robustness to Distributional Shift
Using Real World Data [0.0]
We propose metrics for general regression tasks using the Shifts Weather Prediction dataset.
We also present an evaluation of the baseline methods using these metrics.
arXiv Detail & Related papers (2021-11-08T17:32:10Z) - Self Training with Ensemble of Teacher Models [8.257085583227695]
In order to train robust deep learning models, large amounts of labelled data is required.
In the absence of such large repositories of labelled data, unlabeled data can be exploited for the same.
Semi-Supervised learning aims to utilize such unlabeled data for training classification models.
arXiv Detail & Related papers (2021-07-17T09:44:09Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - BREEDS: Benchmarks for Subpopulation Shift [98.90314444545204]
We develop a methodology for assessing the robustness of models to subpopulation shift.
We leverage the class structure underlying existing datasets to control the data subpopulations that comprise the training and test distributions.
Applying this methodology to the ImageNet dataset, we create a suite of subpopulation shift benchmarks of varying granularity.
arXiv Detail & Related papers (2020-08-11T17:04:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.