Privacy and Efficiency of Communications in Federated Split Learning
- URL: http://arxiv.org/abs/2301.01824v1
- Date: Wed, 4 Jan 2023 21:16:55 GMT
- Title: Privacy and Efficiency of Communications in Federated Split Learning
- Authors: Zongshun Zhang, Andrea Pinto, Valeria Turina, Flavio Esposito and
Ibrahim Matta
- Abstract summary: We propose a new hybrid Federated Split Learning architecture that combines the efficiency and privacy benefits of both.
Our evaluation demonstrates how our hybrid Federated Split Learning approach can lower the amount of processing power required by each client running a distributed learning system.
We also discuss the resiliency of our approach to deep learning privacy inference attacks and compare our solution to other recently proposed benchmarks.
- Score: 5.902531418542073
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Everyday, large amounts of sensitive data \sai{is} distributed across mobile
phones, wearable devices, and other sensors. Traditionally, these enormous
datasets have been processed on a single system, with complex models being
trained to make valuable predictions. Distributed machine learning techniques
such as Federated and Split Learning have recently been developed to protect
user \sai{data and} privacy better while ensuring high performance. Both of
these distributed learning architectures have advantages and disadvantages. In
this paper, we examine these tradeoffs and suggest a new hybrid Federated Split
Learning architecture that combines the efficiency and privacy benefits of
both. Our evaluation demonstrates how our hybrid Federated Split Learning
approach can lower the amount of processing power required by each client
running a distributed learning system, reduce training and inference time while
keeping a similar accuracy. We also discuss the resiliency of our approach to
deep learning privacy inference attacks and compare our solution to other
recently proposed benchmarks.
Related papers
- Accelerated Stochastic ExtraGradient: Mixing Hessian and Gradient Similarity to Reduce Communication in Distributed and Federated Learning [50.382793324572845]
Distributed computing involves communication between devices, which requires solving two key problems: efficiency and privacy.
In this paper, we analyze a new method that incorporates the ideas of using data similarity and clients sampling.
To address privacy concerns, we apply the technique of additional noise and analyze its impact on the convergence of the proposed method.
arXiv Detail & Related papers (2024-09-22T00:49:10Z) - Scalable Federated Unlearning via Isolated and Coded Sharding [76.12847512410767]
Federated unlearning has emerged as a promising paradigm to erase the client-level data effect.
This paper proposes a scalable federated unlearning framework based on isolated sharding and coded computing.
arXiv Detail & Related papers (2024-01-29T08:41:45Z) - An Empirical Study of Efficiency and Privacy of Federated Learning
Algorithms [2.994794762377111]
In today's world, the rapid expansion of IoT networks and the proliferation of smart devices have resulted in the generation of substantial amounts of heterogeneous data.
To handle this data effectively, advanced data processing technologies are necessary to guarantee the preservation of both privacy and efficiency.
Federated learning emerged as a distributed learning method that trains models locally and aggregates them on a server to preserve data privacy.
arXiv Detail & Related papers (2023-12-24T00:13:41Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
Federated edge learning is a promising technology to deploy intelligence at the edge of wireless networks in a privacy-preserving manner.
Under such a setting, multiple clients collaboratively train a global generic model under the coordination of an edge server.
This paper presents a distributed training paradigm that employs analog over-the-air computation to address the communication bottleneck.
arXiv Detail & Related papers (2023-02-24T08:41:19Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Federated Pruning: Improving Neural Network Efficiency with Federated
Learning [24.36174705715827]
We propose Federated Pruning to train a reduced model under the federated setting.
We explore different pruning schemes and provide empirical evidence of the effectiveness of our methods.
arXiv Detail & Related papers (2022-09-14T00:48:37Z) - DQRE-SCnet: A novel hybrid approach for selecting users in Federated
Learning with Deep-Q-Reinforcement Learning based on Spectral Clustering [1.174402845822043]
Machine learning models based on sensitive data in the real-world promise advances in areas ranging from medical screening to disease outbreaks, agriculture, industry, defense science, and more.
In many applications, learning participant communication rounds benefit from collecting their own private data sets, teaching detailed machine learning models on the real data, and sharing the benefits of using these models.
Due to existing privacy and security concerns, most people avoid sensitive data sharing for training. Without each user demonstrating their local data to a central server, Federated Learning allows various parties to train a machine learning algorithm on their shared data jointly.
arXiv Detail & Related papers (2021-11-07T15:14:29Z) - Concentrated Differentially Private and Utility Preserving Federated
Learning [24.239992194656164]
Federated learning is a machine learning setting where a set of edge devices collaboratively train a model under the orchestration of a central server.
In this paper, we develop a federated learning approach that addresses the privacy challenge without much degradation on model utility.
We provide a tight end-to-end privacy guarantee of our approach and analyze its theoretical convergence rates.
arXiv Detail & Related papers (2020-03-30T19:20:42Z) - Federated Residual Learning [53.77128418049985]
We study a new form of federated learning where the clients train personalized local models and make predictions jointly with the server-side shared model.
Using this new federated learning framework, the complexity of the central shared model can be minimized while still gaining all the performance benefits that joint training provides.
arXiv Detail & Related papers (2020-03-28T19:55:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.